
A Comprehensive User Study on Augmented Reality-Based Data
Collection Interfaces for Robot Learning

Xinkai Jiang
xinkai.jiang@partner.kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Paul Mattes
paul.mattes@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Xiaogang Jia
xiaogang.jia@partner.kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Nicolas Schreiber
nicolas.schreiber@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Gerhard Neumann
gerhard.neumann@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Rudolf Lioutikov
lioutikov@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

ABSTRACT
Future versatile robots need the ability to learn new tasks and
behaviors from demonstrations. Recent advances in virtual and
augmented reality position these technologies as great candidates
for the efficient and intuitive collection of large sets of demonstra-
tions. While there are different possible approaches to control a
virtual robot there has not yet been an evaluation of these control
interfaces in regards to their efficiency and intuitiveness. These
characteristics become particularly important when working with
non-expert users and complex manipulation tasks. To this end, this
work investigates five different interfaces to control a virtual robot
in a comprehensive user study across various virtualized tasks in
an AR setting. These interfaces include Hand Tracking, Virtual
Kinesthetic Teaching, Gamepad and Motion Controller. Addition-
ally, this work introduces Kinesthetic Teaching as a novel interface
to control virtual robots in AR settings, where the virtual robot
mimics the movement of a real robot manipulated by the user. This
study reveals valuable insights into their usability and effectiveness.
It shows that the proposed Kinesthetic Teaching interface signifi-
cantly outperforms other interfaces in both objective and subjective
metrics based on success rate, task completeness, and completion
time and User Experience Questionnaires (UEQ+).

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).
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Augmented reality (AR), Robot Interface, Learning from Demon-
stration
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1 INTRODUCTION
Teaching robots new skills and tasks through demonstrations are
essential goals of robot learning and human-robot interaction. The
challenge of learning tasks from demonstrations has received much
attention through Imitation Learning [11], Learning from Demon-
strations [39] and Inverse Reinforcement Learning [8] approaches.

An important prerequisite for such approaches is the quality of
the data and, hence, the data collection process itself. This require-
ment becomes evenmore important due to the high demand for data
required by recent learning methods. Prominent approaches focus
on collecting demonstrations from various sources such as online
videos [33] or dedicated first person videos [13]. However, collect-
ing specific task demonstrations in real world experiments harbours
several challenges, e.g., reproducibility issues due to changing ob-
jects and object poses, cumbersome and slow resetting of experi-
mental setups and inaccurate measurements due to sensor noise.
Virtualisation of the experiment, including the objects and the robot
itself, alleviates many of these challenges as it allows for highly
reproducible and controllable settings that can be quickly reset and
repeated. However, the advantages of collecting demonstrations
with a virtual robot highly depend on the efficiency and intuitive-
ness of the control interface. This work investigates and evaluates
several interfaces to control the virtual robot, ranging from hand
tracking to a physical robot platform. While some approaches uti-
lize screens to virtualize experiments [23], leveraging augmented
or virtual reality (AR) offers significant advantages over screens
[31], by providing an immersive experience that allows intuitive
control over the perspective of the virtual environment.

While research has highlighted the advantages of AR headsets
over screens for visualization purposes [31], there has not yet been
a study investigating the comparative performance of different
interaction methods within AR environments for collecting task
demonstrations for robots. This paper closes this gap by presenting
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(a) Hand Tracking (b) Virtual Kinesthetic Teaching (c) Gamepad (d) Motion Controller (e) Kinesthetic Teaching

Figure 1: The participants were asked to solve the same task, for instance, the Cup Inserting, with all five interfaces. The
top row shows a participant collecting demonstrations using the different interfaces. The bottom row shows the virtualized
environment (here the Cup Inserting task) as it is presented to the participant via the HoloLens 2.

a comprehensive study of different ways to interact with virtual ex-
periments for the sake of collecting demonstrations in an AR setting.
The study compares five different options to interact with the vir-
tual robots, i.e., inside-out Hand Tracking, Kinesthetic Teaching of
a virtual robot, end-effector control via Gamepad, end effector con-
trol via Motion Controller and Kinesthetic Teaching via a physical
robot. Kinesthetic Teaching is a common method for demonstrating
motions on a real physical system, however, we are not aware of
an application of Kinesthetic Teaching to control a virtual robot
in such a context. Yet, we believe that this is a very intuitive and
efficient interface which is also confirmed by our study. We refer
to these different approaches as interaction interfaces and describe
them in detail in Section 3.

A total of 35 participants took part in the study, whereas each
participant utilized every interface to collect up to 3 demonstrations
across 3 tasks with varying difficulty levels. The performance of
the interfaces was evaluated across several dimensions including
objective measures, such as success rate, task completeness, and
completion time of the demonstrated tasks as well as subjective
measures surveyed via the well-established modular extension of
the User Experience Questionnaire (UEQ+) [28].

The conducted study discloses that combining physical Kines-
thetic Teaching with augmented reality provides a powerful yet
intuitive system to efficiently collect demonstrations in virtual en-
vironments. The study further reveals that this system significantly
outperforms any other interface with respect to both the objective
and subjective measures resulting in an effective yet intuitive sys-
tem. Such an interface could also be applied to control a real robot
via teleoperation, however, this is part of future work.

In summary, the contributions of this paper are twofold. First, a
comprehensive study of different interaction interfaces to collect
task demonstrations using a virtual robot in an AR setting. Second,
introducing a new interaction interface leveraging a physical robot
platform for controlling a virtual robot in virtual experimentation.

2 BACKGROUND
While there has been work regarding both interaction interfaces
and AR for Robotics, there has not yet been a study on the efficiency
and intuitiveness of interaction interfaces in virtual environments.

2.1 Robot Interface
Given the goal of efficiently collecting demonstrations in a virtual
environment, we identified five promising interaction interfaces
found in literature, namely (inside-out) Hand Tracking, Virtual
Kinesthetic Teaching, Gamepad Control, Motion Controller and
(Physical) Kinesthetic Teaching.

Hand Tracking uses sensors, usually cameras, to track the hand
of the user and map the robot state to the hand. This interface has
successfully been applied in teleoperation [5, 15] and shared-control
telemanipulation [36, 38] scenarios. Virtual Kinesthetic Teaching
interfaces allow the manipulation of a virtual robot directly using
the participant’s hands. This interface has been utilized to teleoper-
ate physical robots in bi-manual [40] and digital twin [18] settings.
Gamepads have been widely used to control physical robots while
adding very little system complexity. Specifically in the area of
teleoperation, Gamepads have been used to control robots directly
[3] or to create trajectory templates [27]. In addition, there has been
some work investigating the combined effects of Gamepads and AR
in industrial robot programming [35]. Recently, Motion Controllers
have become increasingly popular in both robot learning and teleop-
eration [37]. This interface has been used to demonstrate complex
tasks on a mobile manipulator platform [34] and efficiently teleop-
erate a robot by separating position and orientation control into
separate controllers [21]. Furthermore, haptic cues of the Motion
Controller and AR visual cues can significantly improve teleopera-
tion performance [22]. Kinesthetic Teaching commonly refers to
the manipulation of a physical robot for the purpose of collecting
demonstrations directly on that platform [49]. However, it also pro-
vides a very intuitive and straightforward demonstration interface
for teleoperation systems [39]. While there has been some prelimi-
nary work investigating physical Kinesthetic Teaching controlling
a virtual twin [44], it does not leverage the advantages of combining
this interface with an AR system.

2.2 Human-Robot Interaction
AR systems have shown great promise in the area of Human-Robot
Interaction. A comparison of virtual and physical robots with re-
spect to deictic gestures has shown several advantages of mixed
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(a) Box Stacking (b) Cup Inserting (c) Practical Manipulation

Figure 2: Participants were asked to control a virtual robot via various interfaces to solve three tasks with varying difficulties. (a)
Box Stacking task: Stack 3 boxes vertically within the purple area. (b) Cub Inserting task: Insert 3 cups with varying diameters
into larger cups in particular orientations. (c) Practical Manipulation task: Move the fruits onto the plate, subsequently move
the plate into the purple area and finally flip the mug and position it on the orange area.

reality approaches [14], while other work has leveraged AR systems
to investigate the human behavior in robot learning tasks [16, 30].

2.3 AR & VR for Robotics
The ability to directly render and immerse users in a 3D virtual
environment makes AR technologies a promising tool for collecting
task demonstrations. In combination with haptic feedback, these
technologies have been shown to provide higher teaching efficiency
than common GUIs [31]. AR-assisted robot learning frameworks
for surgery tasks have been shown to reduce the workload demand
on the users when compared to traditional Kinesthetic Teaching
methods [12]. Mixed Reality visualization of potential robotic arm
trajectories can enhance the accuracy and speed of collaborating
users [41]. Similarly, AR can be leveraged to efficiently communi-
cate robot motion and improve overall task performance compared
to non-AR baselines [47]. AR has further been leveraged in ap-
proaches for constrained Learning from Demonstration [26] as well
as sim2real RL [6]. AR is also used to improve the automation of
manufacturing robots [42] and it helps robot development and re-
search by providing visual debugging tools [17]. Other approaches
use virtual reality for teleoperation including robot arm [32, 43],
mobile robot [43], bi-manual robot arm [9, 18, 24], humanoid robots
[7, 19] and surgery robots [2].

3 TECHNICAL DETAILS
This study investigates various interaction interfaces in the context
of their effectiveness and intuitiveness for gathering demonstra-
tions for a virtual robot in AR environments. To achieve this, a
novel framework has been developed, that seamlessly integrates a
game engine responsible for rendering the virtual environment on
AR headsets with a physics simulator, enabling the simulation of
both the virtual robot and manipulated objects.

Within this framework, five distinct interaction interfaces were
implemented, including a physical Panda robot manipulator by
Franka Emika, allowing for direct control of the virtual robot.
This framework significantly facilitates the design of virtual tasks,
presents them in an intuitive manner via augmented reality, and
can efficiently collect demonstrations through various interaction
interfaces. The complete source code and a detailed description, of

how to set up and use the framework and all interfaces including the
Panda robot for controlling its virtual counterpart can be found at
https://github.com/intuitive-robots/IRXR-Unity.git. The framework
serves as the foundation of the conducted user study, which aims to
determine the most efficient and intuitive interaction interface for
the collection of task demonstration in virtual environments based
on both objective metrics, such as success rate, task completeness,
and completion time and subjective metrics evaluated via UEQ+.

3.1 Virtualization
3.1.1 Physics Simulator. The framework deploys theMuJoCo physics
simulator [46], which is widely utilized in robotic algorithms and
simulations. The virtual environments, including various manip-
ulatable objects and a Panda robot, were implemented within the
simulator and combined into several meticulously designed scenar-
ios. Additional data loggers were implemented that record state
information of the virtual robot and objects, including position,
velocity, acceleration and orientation.

3.1.2 Augmented Reality Platform. The virtual scene is presented
to the user via the Microsoft HoloLens 2 [25]. Leveraging the Unity
Engine [45], a custom AR application specifically tailored for the
HoloLens 2 was developed. This AR application is capable of real
time message passing via WebSocket to and from the simulator run-
ning on a desktop PC. The HoloLens 2 renders all virtual elements,
including the robot and the objects, in real time, providing users
with an immersive and interactive experience.

3.1.3 AR Alignment. The alignment between the virtual environ-
ment and the real world is achieved by incorporating a trackable
QR code, that represents the world coordinate frame of the virtual
environment. This approach allows the easy alignment of elements
from the virtual to the physical realm, such as the virtual robot and
the real robot in the physical Kinesthetic Teaching interface.

3.2 Interaction Interfaces
This study investigates five different interaction interfaces with
increasing hardware demands beyond an AR Headset. In order to
maximize the effectiveness and intuitiveness of each interface a
pre-study, described in Section 4.2.1, with six selected users, was

https://github.com/intuitive-robots/IRXR-Unity.git
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conducted and feedback and suggestions from each user were lever-
aged to improve the interfaces. To avoid bias, these six users did
not participate in the subsequent user study.

3.2.1 Hand Tracking. The inside-out Hand Tracking (HT) interface,
shown in Figure 1(a), uses two scene cameras of the AR Headset for
hand tracking and gesture recognition. To increase the intuitiveness,
the gripper of the virtual robot is aligned with the index finger and
thumb of the tracked hand. Given the end effector pose, the robot
configuration is determined using an IK solver. The participants can
intuitively control the robot’s movements by moving their hands
around. A pinch or release motion triggers the closing and opening
of the gripper. A significant limitation of this approach is the need
to always maintain a clear view of the hand since the inside-out
tracking requires the hand to be within the view of the headset.

3.2.2 Virtual Kinesthetic Teaching. Similar to the Hand Tracking in-
terface the Virtual Kinesthetic Teaching (VT), shown in Figure 1(b),
also allows for the direct control of the virtual robot without addi-
tional hardware. However, rather than directly mapping the hand
to the end effector this interface turns the virtual robot into an
interactable virtual module. The participants can move the robot by
grabbing the virtual end effector. Releasing the end effector stops
the tracking. Stretching and squeezing gestures trigger the gripper
to close or open. The robot configuration is determined using an IK
solver given the current end effector pose. Since this interface also
relies on Hand Tracking and gesture recognition it suffers from the
same limitation as the Hand Tracking interface. However, it has
the big advantage, compared to Hand Tracking, that the control of
the virtual robot can be paused at any time by releasing it which,
for instance, allows for comfortable re-orientation of the hands.

3.2.3 Gamepad. The Gamepad (GP) interface, shown in Figure 1(c),
uses a Microsoft Xbox controller to manipulate the virtual robot.
Similar to the control of aerial robots [48], participants control
the end effector pose by pushing and pulling the thumb-sticks.
Subsequently, an IK solver is used to compute the configuration
of the virtual robot. Additional buttons reset the end effector pose
and open or close the gripper.

3.2.4 Motion Controller. The Motion Controller (MC) interface,
shown in Figure 1(d), uses a Vive Pro MC 2.0 and 4 SteamVR base
stations 2.0, which precisely measure the MC’s position and ori-
entation in real time. The end effector pose of the virtual robot is
mapped to the pose of the MC and an IK solver is used to compute
the robot configuration. The virtual gripper is opened and closed
by holding and releasing the triggers of the controller. A limitation
of this interface is the need for an additional tracking system.

3.2.5 Kinesthetic Teaching. The Kinesthetic Teaching (KT) inter-
face, shown in Figure 1(e), allows participants to directly control a
physical version of the virtual robot. The physical robot transmits
joint positions and velocities to the virtualization framework in
real time, mapping the configuration from the physical robot to
the virtual one. The virtual environment is aligned with the real
world, such that the virtual and the real robot overlap exactly. While
this interface provides the most detailed control of the virtual ro-
bot it has the limitation that access to the actual physical robot is
required.
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Figure 3: This graph shows three objective metrics averaged
across all tasks, with each subgraph corresponding to one
specific metric. From this graph, KT took the first place in
success rate and completeness and has the lowest average
completion time. The stars inside the bars correspond to
statistical significance compared toKT (*: 𝑝 < 0.05, **: 𝑝 < 0.01,
***: 𝑝 < 0.001).

4 USER STUDY DESIGN
In order to assess the efficiency and intuitiveness of various inter-
faces for collecting demonstrations, we designed a comprehensive
user study. The study aims to evaluate each interface thoroughly
and establish meaningful comparisons among them. The study was
granted ethical approval, participation was voluntary and informed
consent was given by all participants and guardians if necessary.

4.1 Questionnaire Design
Each participant was asked to answer two types of questionnaires.
One regarding their background with respect to the interfaces and
one to asses each individual interface in the context of controlling
a virtual robot. The background questionnaire includes 7 questions
and aims at theoretical and practical past experiences of participants
with respect to physical robots, AR/VR/MR devices, and the GP.
The multiple choice questions identify potential positive influences
and biases during task execution and helped to avoid subjective
scale measuring [20]. Further details are provided in Appendix A.1.

The control questionnaire measures the subjective assessment of
participants regarding the usage of each of the 5 different interfaces.
The questionnaire itself consists of five UEQ+ scales [28], including
attractiveness, efficiency, perspicuity, dependability, and novelty.
Attractiveness focuses on the likeability of the interface, efficiency
measures how well the participants think they performed, perspicu-
ity indicates how easy it is to learn the interface, dependability
reflects if the interface responds predictably and consistently to the
input and commands of the participant, and novelty measures if the
participant thinks that the interface is original. Each scale presents
four pairs of contrastive adjectives along with a scale ranging from
one to seven, where four is neutral.

4.2 Study Procedure
4.2.1 Pre-Study. Before the actual user study, a pre-study was con-
ducted to collect initial feedback regarding the interfaces and to
investigate the different metrics. The participants performed all
three tasks using all interfaces and filled out the same question-
naires as in the actual user study. Further, free-form feedback about
the usage of the different interfaces was collected. Based on this
feedback, all five interfaces were optimized to function as flawlessly
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Figure 4: This graph shows the success rates for the differ-
ent tasks averaged over all demonstrations. KT consistently
maintains the highest success rate of over 90% in all three
tasks. The poor GP performance in task 2 indicates that it
is not suitable for tasks that require precise control of the
orientation of the end effector. The stars inside the bars cor-
respond to statistical significance compared to KT (*: 𝑝 < 0.05,
**: 𝑝 < 0.01, ***: 𝑝 < 0.001).

and intuitively as possible. The participants executed tasks very
slowly to ensure successful demonstrations. This behavior had two
negative side effects. First, the efficiency measure became diluted
since all interfaces were efficient if the tasks were performed slow
enough. Second, due to the length of the study cognitive fatigue and
decreased engagement resulted in a strong bias against whatever
interface appeared later in the study. To remove these biases, a time
limit per task and a random task assignment were introduced. Each
participant of the proper study will attempt to solve only one ran-
domly selected task with all five interfaces in a given time. Through
these measures, the overall study time per participant was reduced
to one hour, while introducing a gamification effect that reduced
cognitive fatigue and increased engagement across interfaces.

4.2.2 User Study. The user study started with participants filling
out the background questionnaire. Afterwards, each participant
was randomly assigned one task and provided with a correspond-
ing video explaining the task objectives. A randomized order of
the five interfaces prevented potential biases. Before each interface
usage, the participants had one minute to get familiar with the cor-
responding interface. Subsequently, participants performed three
demonstrations with each interface, allowing for potential improve-
ments over time. Each demonstration either finished because the
task was completed or the time limit had been reached, indicating
successful and unsuccessful demonstrations respectively. After the
completion of three demonstrations with one interface, participants
were asked to fill out the control questionnaire, to indicate their
impressions and experiences regarding the corresponding inter-
face. The control questionnaire included free-form feedback, where
participants had the possibility to write down additional thoughts
about the interface.

4.3 Metrics
4.3.1 Objective Metrics. The study evaluates the interfaces along
three objective metrics, task success, task completeness and task com-
pletion time. Task success indicates if the entire task was successfully
finished with the given interface or not. In contrast, task complete-
ness represents how many sub-tasks of the task were completed
as a percentage of the task. Task completion time represents either
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Figure 5: This graph shows the task completeness for each
interface across the different tasks averaged over all tasks. KT
consistently provides high completeness of 98%, showing that
this interface is reliable and easy to use. While MCmaintains
a relatively high completeness between 74% to 85% it can
not compete with KT. The stars inside the bars correspond
to statistical significance compared to KT (*: 𝑝 < 0.05, **:
𝑝 < 0.01, ***: 𝑝 < 0.001).

the time required if the task was completed successfully or the
task specific time limit if the task was not finished fast enough.
Failing a sub-task did not lead to the immediate failure of the whole
task. Participants were able to recover from it, leaving exceeding
the time limit as the only failure condition. The maximum time
value was chosen based on the pre-study results and ensures that a
single participant can conclude the entire study within one hour to
reduce cognitive fatigue. Without the time limit, every task can be
finished with every interface, making completion time the exclusive
comparable objective metric.

4.3.2 Subjective Metrics. The subjective metrics are based on the
UEQ+ catalogue. The selected modules include attractiveness, ef-
ficiency, perspicuity, dependability, and novelty. Each participant
filled out a questionnaire for each interface, providing a direct
indicator of their subjective impressions and overall experiences
regarding the various interfaces. In the context of subjective met-
rics, our analysis is grounded in the responses gathered from the
interface assessment questionnaire administered during the user
study. This metric serves as a direct indicator of the participant’s
subjective impressions and overall experience with the interfaces.

4.4 Study Tasks Design
The user study included three different tasks, box stacking, cup
stacking and practical manipulation, to evaluate each interface in
several dimensions: basic manipulation skills, flexibility, precision
and proficiency. All three tasks were evaluated on the objective
metrics, described in Section 4.3.1.

4.4.1 Box Stacking Task. This task assesses the basic pick and
place capabilities of the interfaces. The participants were asked to
place and stack three boxes (two cubes and one cuboid) within the
target area, as shown in Figure 2(a). Each successfully stacked cube
contributes 0.3 to the completeness score, while the cuboid adds 0.4
to the score. The time limitation to finish this task is 60 seconds.

4.4.2 Cup Inserting Task. This task was designed to evaluate the
flexibility and precision of the interfaces with respect to dexterous
motion. All cup models used in this task are sourced from the
YCB [4] library. Participants were asked to insert three cups with



HRI ’24, March 11–14, 2024, Boulder, CO, USA Xinkai Jiang, Paul Mattes, Xiaogang Jia, Nicolas Schreiber, Gerhard Neumann, and Rudolf Lioutikov

HT VT GP MC KT
Interfaces

20

25

30

35

40

45

50

55

60

Ti
m

e 
in

 S
ec

on
ds

*** *** ***
Time for each Interface for Box Stacking

(a) Task 1

HT VT GP MC KT
Interfaces

25

30

35

40

45

50

55

60

Ti
m

e 
in

 S
ec

on
ds

*** *** **
Time for each Interface for Cup Inserting

(b) Task 2

HT VT GP MC KT
Interfaces

30

40

50

60

70

80

90

Ti
m

e 
in

 S
ec

on
ds

** ***
Time for each Interface for Practical Manipulation

(c) Task 3

Figure 6: This graph shows the time spent for each demonstration per interface per task. The dots and triangles represent
successful and unsuccessful demonstrations respectively. The yellow line in each box shows the mean time of every demon-
stration. The time of each failed demonstration is counted as the maximum time limit. The demonstrations with KT take the
least time and have relatively small variance. The stars above the box plots correspond to statistical significance compared to
KT (*: 𝑝 < 0.05, **: 𝑝 < 0.01, ***: 𝑝 < 0.001).

sizes of 55mm, 60mm and 65mm into three tilted 75 mm cups, as
seen in Figure 2(b). This task assesses the ability to perform 3D
manipulation using the interface. Inserting the 55mm, 60mm and
65mm cups successfully adds 0.25, 0.35, and 0.4 to the completeness
score respectively. The time limitation for this task is 60 seconds.

4.4.3 Practical Manipulation Task. This task was designed to eval-
uate the comprehensive manipulation ability of each interface in
a longer sub-task sequence. It consists of five steps, as shown in
Figure 2(c), including placing a banana on a plate, placing the straw-
berry on the same plate, pushing the plate into a target area, flipping
a mug, and placing it in a specific location on the table. Each suc-
cessful step adds 0.2 to the completeness score. The time limitation
for this task is 90 seconds.

4.5 Participants
The user study included 35 participants aged between 15 and 30,
including 6 females and 29 males. Each participant used all 5 inter-
faces three times for a randomly assigned task. 42 demonstrations
had to be discarded due to system failure, error records, or hardware
issues. 483 valid human demonstrations were performed with the
different interfaces. The statistics of the demonstrations of each
task and each interface are shown in Appendix B.

5 RESULTS & ANALYSIS
5.1 Objective Metrics
Given that all objective metrics follow a similar distribution with
ties between the interfaces for each participant, the Mann-Whitney
U test [29] was used to analyze significant differences between
interfaces. To avoid dependencies across demonstrations of the
same participant, the three demonstrations for each interface were
averaged. A general comparison was conducted over the average of
all tasks, where all different interfaces were compared to each other,
resulting in 10 dependent statistical tests. The more fine-grained
comparison, where every task was analyzed independently, was
only conducted for KT and every other interface, resulting in 4

Table 1: This table illustrates the p-values and effect sizes
(in brackets) for all tasks averaged comparing Kinesthetic
Teaching to all other interfaces (∗ : 𝑝 < 0.05).

Interfaces Completeness Success Time
GP <0.001(0.85) <0.001(0.83) <0.001 (0.96)
HT <0.001(0.69) <0.001(0.67) <0.001 (0.55)
MC <0.001(0.55) <0.001(0.53) 0.010∗ (0.39)
VT <0.001(0.91) <0.001(0.87) <0.001 (0.81)

dependent statistical tests per task. The Benjamini–Hochberg pro-
cedure [1], a false discovery rate method, was applied for statistical
correction in regards to the different amount of dependent statisti-
cal tests, to control the increase in type I errors. All p-values and
effect sizes can be found in Appendix C and Appendix D.

5.1.1 Success Rate. The average success rate over all three tasks
shows that KT was able to significantly outperform the other four
interfaces, as can be seen in Figure 3 and Table 1. All four statistical
tests show a p-value of less then 0.001 and effect sizes of above
0.67, except for a value of 0.53 compared to MC. This indicates
that the observed effect is not only statistically, but also practically
significant. Figure 4 displays the success rate achieved by the dif-
ferent interfaces with respect to all three tasks separately, where
KT achieves a success rate above 90% across all tasks. The statis-
tical tests for all tasks separately also reveal that KT significantly
outperforms all other interfaces, as seen in Table 2, except when
compared to HT in Task 3, where the p-value is slightly above 0.05.
Again the effect sizes are almost always above 0.5 which indicates
a high probability to observe this effect outside the study.

5.1.2 Task Completeness. The task completeness results are shown
in Figure 5. Figure 3 shows the results averaged over all tasks. The
results confirm that KT outperforms the other interfaces, with a very
high completeness of 98% across all tasks. The performed statistical
tests for the average over all tasks reveal the same findings as for
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Figure 7: This graph shows the subjective metrics along the five questionnaire scales. KT positively stands out, boasting a
significant score with relatively low variance compared to the other interfaces, except for novelty. These results indicate that
most of the participants are very satisfied with this interface.

Table 2: This table illustrates the p-values and effect sizes
(in brackets) for all tasks separately comparing Kinesthetic
Teaching to all other interfaces (∗ : 𝑝 < 0.05, ∗∗ : 𝑝 < 0.01).

Metric HT VT GP MC
T1 Comp. <0.001 (0.82) <0.001 (0.99) 0.003∗∗ (0.59) 0.008∗∗ (0.51)
T1 Succ. <0.001 (0.82) <0.001 (0.99) 0.003∗∗ (0.59) 0.008∗∗ (0.51)
T1 Time <0.001 (0.88) <0.001 (0.91) <0.001 (0.81) 0.150 (0.35)
T2 Comp. 0.002∗∗ (0.64) <0.001 (0.89) <0.001 (1.00) 0.002∗∗ (0.69)
T2 Succ. 0.002∗∗ (0.64) <0.001 (0.89) <0.001 (0.99) 0.001∗∗ (0.69)
T2 Time 0.060 (0.44) <0.001 (0.83) <0.001 (1.00) 0.010∗∗ (0.65)
T3 Comp. 0.040∗ (0.51) 0.002∗∗ (0.84) 0.008∗∗ (0.66) 0.050 (0.43)
T3 Succ. 0.050 (0.48) 0.010∗ (0.71) 0.008∗∗ (0.66) 0.050∗ (0.43)
T3 Time 0.390 (0.27) 0.007∗∗ (0.75) <0.001 (0.93) 0.340 (0.24)

the success rate, shown in Table 1. KT is significantly better than
any other interface with p-values below 0.001. The same holds for
the separately tested tasks, shown in Table 2. The only exception
can be found in task 3 when compared to the MC, where the p-value
is again slightly above 0.05. The calculated effect sizes indicate a
medium to large (0.43 - 1.0) observable effect for experiments under
non-laboratory conditions.

5.1.3 Task Completion Time. The mean completion time for the
different interfaces is shown in Figure 6. The KT interface allowed
for the fastest task completion times as most trials could be com-
pleted within the given time limit while other interfaces failed to do
so. The statistical tests reveal again statistical significance in terms
of task average, with p-values below 0.001, except for the compar-
ison between KT and MC where the p-value is 0.01, as shown in
Table 1. The separated tasks reveal non-significance between some
interfaces and KT, including MC in task 1 (p = 0.15), HT in task 2
(p = 0.06), and HT (p = 0.39) and MC (p = 0.34) in task 3, as shown
in Table 2. In all other interface and task comparisons KT is still
significantly faster, indicating the overall dominance of KT across
all tasks.

5.2 Subjective Metrics
The subjective metrics are shown in Figure 7. The study revealed
that KT reaches a higher score with a relatively small variance
across four out of five scales. Looking at Figure 7, KT outperforms
the other interfaces on attractiveness, efficiency, perspicuity, and
dependability. On the novelty scale, KT performs on par with the

other interfaces, with the exception of GP which performs worse
than the rest. The efficiency scale further identified MC as a very
good second option after KT. The perspicuity scale revealed that
MC and HT have a higher ease of understanding and clarity than
VT and GP. HT was further considered the most novel interface,
in stark contrast to GP. These subjective metrics offer valuable
insights into the user perception and preferences associated with
each interface, providing a holistic understanding of the strengths
and weaknesses of each interface.

5.3 Background Analysis
The background assessment indicates that there was no significant
influence of the participant’s background regarding the task execu-
tion. Interestingly, prior experience with a GP positively influenced
performance across all interfaces, not limited to the GP interface
alone, as shown in Appendix A.2. This observation suggests that
the skills and familiarity gained by using a GP, for instance by
playing computer games, could be beneficial when using various in-
terfaces. Additionally, the background assessment explored if there
was a connection between the regular usage of physical robots
and the success rate when using the KT interface. However, the
analysis showed no significant difference, again shown in Appen-
dix A.2. Finally, the background assessment in combination with
the strong performance of the KT interface, indicates that little to
no prior experience with real robots is required to efficiently collect
demonstrations in a virtual setting.

6 DISCUSSION
The study presented in this paper, revealed several advantages and
disadvantages of each interaction interface with respect to both,
the objective and subjective metrics.

The GP interface achieved the worst average performance of all
interfaces, as shown in Figure 3, resulting from its poor performance
in Task 2, compared to Task 1 and 3, as shown in Figure 5. The
poor Task 2 performance indicates that dexterous manipulation,
e.g., the positioning of one cup inside another with a particular
orientation is a significant limitation of this interface. At the same
time, GP offers an easy and cheap way to control a virtual robot,
without complex software, and can be used most effectively by
people familiar with GP interfaces, as shown in Appendix A.2.
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Participants see VT as an innovative approach to robot interac-
tion, as shown in Figure 7(e), but it performed only slightly better
than the GP interface on task average performance in Figure 3.
Feedback from the participants indicated that a substantial contri-
bution to the subpar performance of the VT interface was the lack
of haptic or physical feedback. The participants were not able to
feel the weight or inertia of the virtual robot, leading to a similar ef-
fect as the size-weight illusion [10]. Some participants, additionally,
reported task failures due to the instability of the hand tracking
and gesture recognition system, reported in Figure 7(d), resulting in
an overall worse performance on all tasks using the VT interface.

HT exhibits substantial potential as an interface for robot inter-
action. It stands out by delivering a performance that beats the GP
and VT on task average, as seen in Figure 3, and even outperforms
MC in Task 2 and 3, as shown in Figure 5. HT is based on inside-out
tracking and has the significant limitation that the participants
have to maintain a clear view of their hand during the tasks. The
questionnaires revealed that participants perceived HT as the most
novel interface for controlling robots, as seen in Figure 7(e).

The MC interface was perceived to be efficient and user-friendly
given the subjective metrics, as seen in Figure 7(b) and Figure 7(c).
Participants particularly appreciated the simplicity of gripping ob-
jects by merely holding the trigger of the MC, which was deemed
more convenient in comparison to KT. The MC also exhibited com-
mendable completeness scores across all three tasks, with a success
rate exceeding 74%.With the increasing prevalence of AR consumer
products, MC deployment and integration have become more ac-
cessible. Its notable efficiency, high success rate, and ease of use
make it also a great candidate for data collection in virtual settings.

The user study revealed KT to be the overall best interface for
controlling virtual robots in the aspects of efficiency and intuitive-
ness. It outperformed other interfaces with an almost perfect suc-
cession rate of 95% across all tasks, compared to the 55% of the
second highest interface, the MC, as seen in Figure 3. This high suc-
cess rate makes KT a great interface to record human trajectories
reliably and successfully in virtualized experiments. Furthermore,
the participants only needed 64% of the maximum time to finish
tasks on average, as shown in Figure 3. This high success rate com-
bined with the little to no prior experience with the physical robot,
indicates that KT provides a fast learning curve. KT is on average
the most attractive and efficient interface, as seen in Figure 7(a)
and Figure 7(b), suggesting that people not only like controlling
with a real robot but also feel more effective doing so. Almost all
participants agreed on the clear and straightforward use of KT, as
shown in Figure 7(c), as well as its dependability, shown in Fig-
ure 7(d). These factors are important for non-expert users, as clear
usage and dependability make it easier to actually succeed with a
new interface during task execution. The only issue is the novelty
aspect, shown in Figure 7(e), where HT and VT are seen as more
novel, instead of using a real robot to control a virtual one.

The main disadvantage of KT is the need for the physical robot as
a control interface for the virtual robot, which is expensive and not
necessarily available for other researchers. The robot used in this
study was a Panda by Franka Emika, which is a common robot in
many research laboratories, alleviating the availability problem. If

a physical robot is no option, the study identified the MC interface
as a very good alternative to KT. However, it still requires the MC
setup, including the lighting house system. The cheapest and most
readily available solution appears to be the GP, as it performed
well on stacking and manipulation tasks, as seen in Figure 5 Box
Stacking and Practical Manipulation.

Some participants experienced difficulties with the end effector
of the physical robot, as closing the grippers required more effort
and its mobility could be affected by the joint configuration. Some
feedback suggested that incorporating a physical button, such as
the ones in Motion Controllers or Gamepads, would significantly
enhance the user experience for closing the gripper.

A limitation of the study is the young age bracket of participants,
15-30 years. Age could influence the intuitive use of different inter-
faces, like GP and MC, as they are in general much more familiar
with these devices than older people. Similarly, participants with
frequent GP usage prior to the study, appear to be more efficient
with all five interfaces in general. This observation raises the ques-
tion if more practice with any of the interfaces increases the general
performance. Hence, the results could be affected by an increased
amount of demonstrations per participant. However, both of these
limitations are only minor concerns, as the age group reflects the
main AR target group and more practice will in general always
increases results. Indeed, less experienced users were preferable for
this study, since it investigated the intuitive use of the interfaces,
where performance given less practice is more informative.

7 CONCLUSION & FUTUREWORK
This paper, presented a comprehensive study with 35 participants
using different interaction interfaces for controlling a virtual robot
in an AR setting. The results highlight the outstanding performance
of the KT interface across almost all objective and subjective met-
rics. If the high hardware requirements of KT can not be fulfilled,
the study identified MC as a strong alternative to control virtual
robots, with lower cost and setup requirements. While the require-
ments for GP are even lower, GP is only recommendable in simple
tasks such as pick and place, whereas MC also performs well in 3D
manipulation tasks. KT can also be transferred to industry applica-
tions. Creating demonstrations using the actual robot can be used
to collect data on the exact same hardware using the same objects
as the production setup. Similarly, the system is also applicable in
teleoperation settings to collect human demonstrations over long
distances or in hazardous environments. Future work can build on
the findings of this study to collect human demonstrations in a fast
and efficient way virtually or in real life. A follow-up study could
investigate the usage of real objects during demonstrations and
transfer the presented work to control real robots.
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Figure 9: The values are averaged over all tasks and only
differentiate between interfaces and different answers. Par-
ticipants with a higher frequent usage of Gamepads actually
achieve higher results.
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Figure 10: The values are averaged over all tasks and only
differentiate between interfaces and different answers.
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Figure 11: The values are averaged over all tasks and only
differentiate between interfaces and different answers.
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Figure 12: The values are averaged over all tasks and only
differentiate between interfaces and different answers.
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Figure 8: The values are averaged over all tasks and only
differentiate between interfaces and different answers. Par-
ticipants with a higher frequent usage of Gamepads actually
achieve higher results.
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Figure 13: This graph illustrates the distribution of the time
spent on the first demonstration created by each participants
with each interface from Task 1 to Task 3.
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Figure 14: This graph illustrates the distribution of the time
spent on the last demonstration created by each participant
with each interface from Task 1 to Task 3.

Table 3: The number of demonstrations per task and interface

Box Cup Man.
Gamepad 30 36 29
Hand Tracking 31 40 27
Kinesthetic Teaching 35 37 32
Motion Controller 31 32 30
Virtual Kinesthetic Teaching 30 35 28

A BACKGROUND
A.1 Questionnaire
The questionnaire included the following questions:

• Q1: "How much experience do you have in robotics?"
• Q2: "How much experience do you have in physical robots?"
• Q3: "How often do you work with physical robots?"
• Q4: "How much experience do you have in AR/VR/MR devices?
(e.g, Oculus Quest, HTC Vive, HoloLens, etc. )"

• Q5: How often do you use AR/VR/MR devices? (e.g., Oculus
Quest, HTC Vive, HoloLens, etc. )

• Q6: How much experience do you have in using a Gamepad?
(e.g., Joystick/Xbox?)

• Q7: How often do you use a Gamepad? (e.g., Joystick/Xbox?)
The multiple choices for Q1, Q2, Q4, and Q6 are "No experience",

"Less than 1 year", "From 1 to 3 years" and "More than 3 years", for
Q3, Q5, and Q7 they are "Never", "Hardly (Once or twice a year)",
"Sometimes (Around once a month)" and "Almost every week". All 7
questions are asked in an explicit way, to avoid misunderstandings.

A.2 Analysis
Analyzing the participants background data gives valuable insight
for possible conditions that should be met, when high quality
demonstrations should be collected. Therefore, two different as-
pects were investigated, including (prior) Gamepad experience and
(prior) physical robot experience. The Gamepad results are dis-
played in Figure 8 and Figure 9. We can observe an upward trend
in success rate and completeness for all interfaces, when looking at
participants with a more frequent usage of Gamepads or more prior
experience with it. The robot experience results are displayed in Fig-
ure 10, Figure 11 and Figure 12 and display no noticeable trends, as
they appear more random. Rather low sample sizes for the frequent
usage of physical robots additionally complicate interpretation of
results.

B COMPARISON OBJECTIVE METRICS FOR
FIRST AND LAST DEMONSTRATION

This section captures the results of the objective metrics in regards
to the first and last demonstration performed by every participant,
all displayed in Figure 13(a), Figure 14(a), and Figure 15 and Fig-
ure 13(b), Figure 14(b), and Figure 16. These values show stable
performance for KT, regardless of the execution number.

C P-VALUE RESULTS FOR ALL OBJECTIVE
METRICS

All calculated p-values are displayed in this section. Table 4 provides
the p-values for the completeness metric, where all interfaces are
compared with each other. Therefore, the Benjamini-Hochberg
procedure was used, to adjust for the increase in type I errors, as
10 different statistical tests were conducted. The same was done
for success rate and completion time, both displayed in Table 5
and Table 6. Table 7 shows all p-values in regards to the separate
tasks and metrics, now only comparing KT to all other interfaces,
resulting in only 4 different statistical tests, still using the Benjamini-
Hochberg procedure.
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Figure 15: This graph illustrates the distribution of the time spent on each first demonstration from participants with each
interface from Task 1 to Task 3. The dots and triangles represent successful and unsuccessful demonstrations.
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Figure 16: This plot illustrates the distribution of the time spent on each last demonstration from participants with each
interface from Task 1 to Task 3. The dots and triangles represent successful and unsuccessful demonstrations.

Table 4: This table illustrates the p-values of completeness in all tasks in regards to the statistical correction procedure
Benjamini–Hochberg with 10 different tests (* < 0.05, ** < 0.01, *** < 0.001)

Gamepad Hand Tracking Kinesthetic T. Motion Controller Virtual Kinesthetic T.
Gamepad - 0.09 < 0.001*** 0.04* 0.93
Hand Tracking - - < 0.001*** 0.55 0.09
Kinesthetic T. - - - < 0.001*** < 0.001***
Motion Controller - - - - 0.02*
Virtual Kinesthetic T. - - - - -

Table 5: This table illustrates the p-values of success in all tasks in regards to the statistical correction procedure Ben-
jamini–Hochberg with 10 different tests (* < 0.05, ** < 0.01, *** < 0.001)

Gamepad Hand Tracking Kinesthetic T. Motion Controller Virtual Kinesthetic T.
Gamepad - 0.12 < 0.001*** 0.06 0.81
Hand Tracking - - < 0.001*** 0.59 0.16
Kinesthetic T. - - - < 0.001*** < 0.001***
Motion Controller - - - - 0.07
Virtual Kinesthetic T. - - - - -
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Table 6: This table illustrates the p-values of completion time in all tasks in regards to the statistical correction procedure
Benjamini–Hochberg with 10 different test (* < 0.05, ** < 0.01, *** < 0.001)

Gamepad Hand Tracking Kinesthetic T. Motion Controller Virtual Kinesthetic T.
Gamepad - 0.03* < 0.001*** 0.007** 0.36
Hand Tracking - - < 0.001*** 0.46 0.17
Kinesthetic T. - - - 0.01* < 0.001***
Motion Controller - - - - 0.04*
Virtual Kinesthetic T. - - - - -

Table 7: This table illustrates the p-values for all tasks separately comparing Kinesthetic Teaching to all other interfaces in
regards to the statistical correction procedure Benjamini–Hochberg with 4 different test (* < 0.05, ** < 0.01, *** < 0.001)

Metric + Task Hand Tracking Gamepad Motion Controller Virtual Kinesthetic T.
Completeness T1 < 0.001*** 0.003** 0.008** < 0.001***
Success T1 < 0.001*** 0.003** 0.008** < 0.001***
Time T1 < 0.001*** < 0.001*** 0.15 < 0.001***
Completeness T2 0.002** < 0.001*** 0.002** < 0.001***
Success T2 0.002** < 0.001*** 0.001** < 0.001***
Time T2 0.06 < 0.001*** 0.01** < 0.001***
Completeness T3 0.04* 0.008** 0.05 0.002**
Success T3 0.05 0.008** 0.05* 0.01*
Time T3 0.39 < 0.001*** 0.34 0.007**

D EFFECT SIZE RESULTS FOR ALL OBJECTIVE
METRICS

This section reports all calculated effect sizes, which indicate if
the observed statistical effect is also likely to be observed in a

real world scenario. Again, the results are calculated using the
Benjamini-Hochberg procedure.
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Table 8: This table illustrates the effect sizes of completeness in all tasks in regards to the statistical correction procedure
Benjamini–Hochberg with 10 different tests

Gamepad Hand Tracking Kinesthetic T. Motion Controller Virtual Kinesthetic T.
Gamepad - 0.26 0.85 0.34 0.02
Hand Tracking - - 0.69 0.09 0.27
Kinesthetic T. - - - 0.55 0.91
Motion Controller - - - - 0.37
Virtual Kinesthetic T. - - - - -

Table 9: This table illustrates the effect sizes of success in all tasks in regards to the statistical correction procedure Ben-
jamini–Hochberg with 10 different tests

Gamepad Hand Tracking Kinesthetic T. Motion Controller Virtual Kinesthetic T.
Gamepad - 0.25 0.83 0.31 0.03
Hand Tracking - - 0.67 0.09 0.22
Kinesthetic T. - - - 0.53 0.87
Motion Controller - - - - 0.29
Virtual Kinesthetic T. - - - - -

Table 10: This table illustrates the effect sizes of completion time in all tasks in regards to the statistical correction procedure
Benjamini–Hochberg with 10 different test

Gamepad Hand Tracking Kinesthetic T. Motion Controller Virtual Kinesthetic T.
Gamepad - 0.34 0.96 0.42 0.14
Hand Tracking - - 0.55 0.11 0.22
Kinesthetic T. - - - 0.39 0.81
Motion Controller - - - - 0.32
Virtual Kinesthetic T. - - - - -

Table 11: This table illustrates the effect sizes for all tasks separately comparing Kinesthetic Teaching to all other interfaces in
regards to the statistical correction procedure Benjamini–Hochberg with 4 different test

Metric + Task Gamepad Hand Tracking Motion Controller Virtual Kinesthetic T.
Completeness T1 0.59 0.82 0.51 0.99
Success T1 0.59 0.82 0.51 0.99
Time T1 0.81 0.88 0.35 0.91
Completeness T2 1.0 0.64 0.69 0.89
Success T2 0.99 0.64 0.69 0.89
Time T2 1.0 0.44 0.65 0.83
Completeness T3 0.66 0.51 0.43 0.84
Success T3 0.66 0.48 0.43 0.71
Time T3 0.93 0.27 0.24 0.75
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