BEAST: An Efficient Action Tokenizer with B-Splines                            
   
     
       
         
           

BEAST: Efficient Tokenization of B-Splines Encoded Action Sequences for Imitation Learning

           
                                            Hongyi Zhou1, Weiran Liao2,                  Xi Huang3,                  Yucheng Tang4,                  Fabian Otto5,                  Xiaogang Jia 1,2,                  Xinkai Jiang1,2, Simon Hilber 1,                  Ge Li1,2, Qian Wang2, Ömer Erdinç Yağmurlu1, Nils Blank1,                  Moritz Reuss1,                  Rudolf Lioutikov1                  
                 
                    1. Intuitive Robots Lab (IRL), KIT, Germany                  
                 
                    2. Autonomous Learning Robots (ALR), KIT, Germany                  
                 
                    3. Intelligent Process Automation and Robotics Lab (IPR), KIT, Germany                  
                 
                    4. Institute for Robotics and Autonomous Systems (IRAS), HKA, Germany                  
                 
                    5. Microsoft Research, UK                  
                 
                             
       
     
   
 
 
   
     
       

Abstract

       
         

            We present the B-spline Encoded Action Sequence Tokenizer             (BEAST), a novel action tokenizer that encodes action sequences into compact discrete or continuous tokens using B-spline. In contrast to existing action tokenizers based on vector quantization or byte pair encoding, BEAST requires no separate tokenizer training and consistently produces tokens of uniform length, enabling fast action sequence generation via parallel decoding. Leveraging our B-spline formulation, BEAST inherently ensures generating smooth trajectories without discontinuities between adjacent segments. We extensively evaluate BEAST by integrating it with three distinct model architectures: a Variational Autoencoder (VAE) with continuous tokens, a decoder-only Transformer with discrete tokens, and Florence-2, a Vision-Language Model with an encoder-decoder architecture, demonstrating BEAST's compatibility and scalability with large pretrained models. We evaluate BEAST across three established benchmarks consisting of 166 simulated tasks and on three distinct robot settings with a total of 8 real-world tasks. Experimental results demonstrate that BEAST (i) significantly reduces both training and inference computational costs, and (ii) consistently generates smooth, high-frequency control signals suitable for continuous control tasks while (iii) reliably achieves competitive task success rates compared to state-of-the-art methods.          

       
     
   
 
 
   

BEAST Tokenizer

                
       
           

BEAST-F: A tiny (0.77B) yet powerful VLA building upon BEAST Tokenizer

                   
        Architecture Overview    
 
   

Calvin

           
               
      
 
   

LIBERO

           
               
      
 
   

Aloha_Sim

       
     
       
         

Insertion

                 
                
  S      

Transfer

                 
     
   
 
 
   

Franka Challenge

           
     

Fold

         
            
     

Mixer

         
       
     

Pour

         
       
     

Sweep

         
 
 
   

Franka Kitchen

           
     

Fold

         
            
     

Mixer

         
       
     

Pour

         
 
 
   

Real World Aloha

           
               
      
 
   

BibTeX

   

If you find our work useful, please cite our paper:

   
@inproceedings{
    zhou2025beast,
    title={{BEAST}: Efficient Tokenization of B-Splines Encoded Action Sequences for Imitation Learning},
    author={Hongyi Zhou and Weiran Liao and Xi Huang and Yucheng Tang and Fabian Otto and Xiaogang Jia and Xinkai Jiang and Simon Hilber and Ge Li and Qian Wang and {\"O}mer Erdin{\c{c}} Ya{\u{g}}murlu and Nils Blank and Moritz Reuss and Rudolf Lioutikov},
    booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
    year={2025},
    url={https://openreview.net/forum?id=rQCl1sf62w}
}