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Abstract—Learning skills by imitation is a promising concept
for the intuitive teaching of robots. A common way to learn
such skills is to learn a parametric model by maximizing the
likelihood given the demonstrations. Yet, human demonstrations
are often multi-modal, i.e., the same task is solved in multiple
ways which is a major challenge for most imitation learning
methods that are based on such a maximum likelihood (ML)
objective. The ML objective forces the model to cover all data,
it prevents specialization in the context space and can cause
mode-averaging in the behavior space, leading to suboptimal or
potentially catastrophic behavior. Here, we alleviate those issues
by introducing a curriculum using a weight for each data point,
allowing the model to specialize on data it can represent while
incentivizing it to cover as much data as possible by an entropy
bonus. We extend our algorithm to a Mixture of (linear) Experts
(MoE) such that the single components can specialize on local
context regions, while the MoE covers all data points. We evaluate
our approach in complex simulated and real robot control tasks
and show it learns from versatile human demonstrations and
significantly outperforms current SOTA methods. 1

Index Terms—Imitation, Versatility, Curriculum Learning

I. INTRODUCTION

To increase the accessibility of robotic systems, we need
intuitive ways to teach them new skills. One promising and
well-studied approach to this problem is imitation learning. In
this setting, the robot learns new skills from demonstrations
provided by a domain expert, e.g., through teleoperation. Most
imitation learning approaches then fit a simple probabilistic
model to those demonstrations allowing them to copy the
expert’s behavior by sampling from the model.

Learning a skill model from real word demonstrations
commonly suffers from three significant problems, a) outlier-
sensitivity, b) locality-violations in context space and c) mode-
averaging in behavior space. Consider kinesthetic demon-
strations of a robot hitting a table tennis ball. Commonly,
some demonstrations will run into joint limits, however, these
demonstrations might be few and significantly different from
other demonstrations. In common approaches, such demon-
strations have to be filtered out manually a priori or the learned
model will include such degenerating demonstrations into its
behavior, suffering from outlier-sensitivity [1]. Furthermore,
the context points in such an example would cover a large
area of the table. Covering disjoint or excessively large areas
of the context space generally leads to bad behavior, especially
if the skill parametrization is linear in the context, which is
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1A reference implementation can be found at
https://github.com/intuitive-robots/ml-cur

a common assumption due to its computational simplicity.
Avoiding this locality-violation allows each skill to specialize
on a local subset of the contexts-space, performing better in
that particular region than an overly general skill. Finally, sig-
nificantly different strokes that return the ball to the same point
are an example of the multi-modality generally found in real-
world demonstrations [2]. Common approaches combine these
different modes into one interpolated, suboptimal behavior that
suffers from mode-averaging. If the number of components
is less than the unknown number of modes present in the
demonstrations, this problem even exists for mixture models
that are optimized using common approaches such as EM and
other likelihood-based methods.

We propose a novel approach to learning a Mixture of
Experts (MoE) models that avoid these three problems. To
this end, we introduce a) per-component weights on each data
point that allow each component to select its own curriculum,
i.e., the subset of data points it considers for its behavior.
This weighting explicitly allows each component to ignore
unfavored data points, avoiding outlier-sensitivity. b) a per-
component Gaussian context distribution that prevents locality-
violations in the context space and allows each component
to learn specialized behavior for a region of the context
space. And c) an optimization objective for updating the
weights that prevent each component from mode-averaging,
by learning the weights that optimize the likelihood and the
context distribution simultaneously, while still incentivizing a
larger coverage of data points through an entropy bonus.

We show our approaches’ advantages in three experiments
and a detailed ablation study. For the experiments, we use a
simple toy example, a sophisticated table-tennis simulation,
and a highly multi-modal, contextual obstacle avoidance task
using a Franka Emika Panda 7DoF Manipulator, as shown
in Fig. 1. For the real robot task, we use versatile human
demonstrations that exhibit the above-mentioned challenging
properties. We compare our method to several baselines, i.e.,
Expectation Maximization [3], Expected Information Max-
imization [4], K-Nearest Neighbours, Normalizing Autore-
gressive Flows [5], and a Mixture Density Network-based
approach [6]. We outperform the baselines in all tasks.

II. PRELIMINARIES

We consider a given set of demonstrations T =
{(τ i, ci)}Ni=1. A trajectory demonstration τ i = (s0, s1, ...sTi

)
consists of the recorded states, e.g., joint configurations, st of
the robot and the context ci defines task properties required
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Fig. 1: Left: Virtual Table Tennis environment. The ball is launched above the red dot towards the robot and is supposed to hit
on the green dot on return. Center: Data Collection for the obstacle avoidance task by a human demonstrator. Right: Virtual
twin for the obstacle avoidance task. For each demonstration the obstacles, serving as contexts, are randomly placed.

to contextualize a given demonstration. The context vector
c encodes environmental states and desired goal conditions,
such as obstacle or target positions. In contrast to prior work
[7, 8, 9] the context vector is not required to be in the
sensorimotor space of the robot nor does it specify a new
coordinate system. The demonstration length Ti is different
for each τ i. We represent skills as movement primitives [10],
specifically Probabilistic Movement Primitives (ProMPs) [11].
ProMPs use time-dependent radial basis functions Φ, that are
centered at different points in time and linearly combined with
a parameter vector ω to represent trajectories. This compactly
represents each expert trajectory as a parameter vector ω
which is fitted to the demonstration using linear regression

ωi =
(
ΦTΦ+ λI

)−1

ΦT τ i. (1)

Exact details are shown in [11]. Together with the context for
each demonstration, we obtain a data set D = {ci,ωi}Ni=1

which we can use to fit our model. To capture the versatility,
we employ a Mixture of Expert (MoE) model, given as

p(ω|c) =
∑
o

p(ω|c, o)p(o|c). (2)

Here p(o|c) is the softmax gating distribution and p(ω|c, o)
are linear conditional Gaussian experts.

III. RELATED WORK

Imitation Learning for Versatile Skills. In the simplest
case, learning skills as movement primitives [10, 11] from
human demonstrations amounts to regression. To capture ver-
satility in the behavior we need to learn multi-modal models,
e.g., mixture models. Common approaches that learn GMMs
over MP parameters via EM, only use the resulting mixture
models to find suitable MP parameters for novel contexts
[12, 13]. Neither of these approaches capture versatile behavior
for individual contexts. Other approaches learn a mixture
over contextualized MPs using Gaussian Mixture Regression
[14] and learn non-linear relations between context and MP
parameters by using a mixture density network [6]. All of
the above-mentioned approaches use maximum likelihood
objectives and thus suffer from the mode-averaging problem.
Expected Information Maximization (EIM)[4] computes the

information projection [15] based on samples that can be ap-
plied to skill-based imitation learning [16]. Yet, EIM relies on
an intermediate density ratio estimation step [17], making the
approach inefficient and hard to tune. EIM further suffers from
locality-violations. Recent approaches use generative deep
learning models [7, 18] or apply preference learning using
additional human rankings [19]. However, these approaches
do not leverage skill-based representations but instead operate
on entire trajectories of state-action pairs.

Curriculum Learning. While curricula are a well-studied
technique to improve the performance of supervised [20, 21]
and reinforcement learning [22] approaches, we are not aware
of any approaches using curricula for skill-based imitation
learning. Our approach is inspired by a recent approach to
versatile skill discovery in reinforcement learning [23]. They
employ the same MoE parametrization, as a basis for a cur-
riculum approach to versatile maximum entropy reinforcement
learning. Yet, as they consider a fundamentally different setting
they use a different formulation of the curriculum. Further,
they only addressed locality-violations as reinforcement learn-
ing objectives naturally do not suffer from mode-averaging.

IV. CURRICULUM-BASED IMITATION LEARNING

Consider a given set of demonstrations T = {(τ i, ci)}Ni=1,
where each tuple consists of a demonstrated trajectory τ i and
a corresponding context variable ci, e.g., a joint trajectory of
a robot hitting a table tennis ball and the balls subsequent
point of impact on the table. Our goal is now to learn a
parameterized, generative contextual skill model pΘ(ω|c) over
a motion primitive weighting ω given a particular context
c under the parameters Θ, e.g., predict the weights of a
primitive that hits a table tennis ball such that it bounces
of the table at a particular position. In this work we use the
ProMP representation and, hence, apply the weight projection
in Eq. 1 to transform the dataset T = {(τ i, ci)}Ni=1 into
the corresponding dataset D = {ωi, ci}Ni=1. Note that such
a projection is not unique to ProMPs and other primitive
representations could be used just as well. We first motivate
our objective for a single component in and then extend it
to the Mixture of Experts (MoE) case. We call the resulting
method Maximum-Likelihood based Curriculum (ML-Cur).



Curriculum Imitation Learning for a Single Expert. An
intuitive objective for fitting a model is to maximize the log-
likelihood L (θ|D) =

∑
i log pθ(ωi|ci), with θ being the

parametrization of a single component, e.g., the mean and
covariance of a ProMP weight distribution. While easy to op-
timize, this approach suffers from the discussed shortcomings
outlier-sensitivity, locality-violation and mode-averaging. By
introducing a weight νi for each demonstration the compo-
nent is able to only consider a relevant subset of the given
demonstrations, i.e. its curriculum, allowing the component to
ignore outliers or data points from other modes. The weights
ν sum up to 1 and are strictly positive. We further introduce a
Gaussian context distribution pη(c) restricting the component
to a local subspace of the context and enables the component
to learn more specialized behavior, addressing the locality-
violation problem. The resulting objective

arg max
ν1:N ,η,θ

∑
i

νi (log pθ(ωi|ci) + log pη(ci)) , (3)

ensures that the maximum likelihood updates for pη(c) and
pθ(ω|c) are i) coupled, ii) only consider data points that
p(ω|c) can represent and iii) the considered data points are
local in the context space. However, the objective in Eq. 3
would encourage greedy components with increasingly smaller
curricula. We counter this behavior by introducing an entropy
bonus over the data weights H [ν] = −

∑
i νi log νi, yielding

the single component objective

arg max
ν1:N ,η,θ

∑
i

νi (log pθ(ωi|ci) + log pη(ci))

+ αH (ν) , (4)

with scaling factor α. This objective yields an exciting new
type of learning process which forms the core of our proposed
method. At the beginning the component will focus on a
small curriculum, i.e., a small set of data points, since the
log-likelihood will dominate the objective. With increasing
learning process the likelihood of more data points will in-
crease and the entropy term will force the component to extend
its curriculum to more data points until the ‘representational
capacity’ of the component is reached and further data points
can not be represented well any more. At the same time the
context distribution ensures the locality of the curriculum in
the context space.

Objective 4 can now be iteratively optimized for pθ(ω|c)
and pη (c) and subsequently for the data weights ν1:N . The
updates for θ and η follow common derivations for MoE
models. However, the closed form solution for the data weights

ν∗i ∝ (pθ (ωi|ci) pη (ci))
1
α (5)

offers the valuable insight that the weight νi is high iff
pθ (ωi|ci) pη (ci) is high, allowing the component to adjust
its curriculum by specializing on favored (ωi, ci) tuples. Note
that this specialization is only possible as we iteratively opti-
mize the individual terms. This weight update in combination
with the locality provided by the Gaussian context distribution

further ensures that the weighted maximum likelihood updates
for θ and η are not subject to mode averaging.

The scalar factor α in Eq. 4 trades off the importance of the
likelihood terms and the entropy of the weight distribution. For
high α values the updates for p(c) and p(ω|c) will approach
the standard maximum likelihood update as the weights will
get more and more uniform. In contrast, a too-small α can
cause the expert to concentrate on a single data point only.
Due to highly varying ranges of the log likelihoods and
the entropy values during training, choosing a good value
is not straightforward. We therefore additionally propose an
extension that automatically tunes α.

Curriculum-Based Imitation Learning for MoE. We
propose a multi-modal model that allows individual compo-
nents to a) specialize on local context regions while avoiding
spanning over the whole context space, b) ignore modes it
cannot represent, and c) still cover as much as possible of the
available data. Following [23], we define our mixture model
as

pΘ(ω|c) =
∑
o

pη(c|o)pλ(o)
p(c)

pθ(ω|c, o), (6)

where pθ(ω|c, o) and pη(c|o) denote the component and
the context distribution analogous to above, which are now
additionally conditioned on the respective component. The K-
variate categorical distribution pλ(o) models a gating prior
over the K components and p(c) =

∑
o pη(c|o)pλ(o) denotes

a prior over the context. The model in Eq. 6 differs from stan-
dard mixture of experts (Eq. 2) by modelling the component-
wise context distribution pη(c|o) and pλ(o) instead of the
gating distribution p(o|c). This formulation defines a mixture
model where each component has its own curriculum while
focusing on a local context region.

A naive approach to update the MoE model is to use the
objective in Eq. 4 and let each component specialize indepen-
dently on a different part of the data set. In this case however,
components might adjust their curriculum similarly and thus,
concentrate on the same data regions, as they are not aware
on which regions the other components specialize. To allow
each components to adjust its curriculum independently while
coordinating the curriculum with other components, we define
individual data weights νo,i for each component, yielding the
per-datapoint weight νi = 1

K

∑
o νo,i. In combination with the

entropy bonus in Eq. 4 such weights force the components to
focus on different parts of the context space. Following the
described intuitions, we extend our objective (Eq. 4) to

argmax
Θ

∑
i

∑
o,θ,η

νo,i(log pθ(ωi|ci, o) + log pη(ci|o)

+ log pλ(o)) + αH(ν), (7)

with H(ν) = −
∑

i
1
K

∑
o νo,i log

1
K

∑
o νo,i being the

entropy over all per-component data weights and Θ =
{ν1:K,1:N ,η1:K ,θ1:K ,λ} being the learned parameters of the
model. This objective is very similar to the one in Eq. (4), but
with the key distinction that the likelihood and weight terms
are now conditioned on the mixture variable o.



Optimizing the MoE. As described and motivated above,
we now seek to maximize Objective 7 w.r.t. ν1:K,1:N ,η1:K

and θ1:K . This optimization can be easily done with weighted
maximum likelihood updates. However, the optimization w.r.t.
νo,i is difficult since the sum over o appears inside the log of
the entropy term, rendering a closed form solution for νo,i
infeasible. We tackle this problem by introducing a (tight)
variational lower bound similar to [24]

argmax
Θ

∑
i

∑
o,θ,η

νo,i(log pθ(ωi|ci, o) + log pη(ci|o)

+ log pλ(o)) + αH(νo,i), (8)

with H(νo,i) = − 1
K

∑
i

∑
o νo,i(log νo,i− log ν̃o|i) and ν̃o|i =

νoldo,i /
∑

o ν
old
o,i being the per component data entropy and

component data responsibility respectively. Intuitively, the log
of the data responsibility returns a high value, if only one
component o is responsible for data point i, encouraging the
components to divide the data points among each other and
thus avoid overlapping support. Note that the old weight νoldo,i

is simply fixed to the weight of the previous iteration. The
lower bound in Eq. 8 does not have any effect on the weighted
maximum likelihood update rules for η1:K ,θ1:K and λ, but
yields a closed-form solution for the component weight update

νo,i ∝ (pθ(ωi|ci, o)pη(ci|o)pλ(o))K/α
ν̃o|i, (9)

recovering the solution from Eq. 5 adjusted to mixture models.
Autotuned Entropy Scaling. Choosing the entropy scaling

parameter α is not straightforward and might yield unsat-
isfying results, caused by highly varying ranges of the log
likelihoods and the entropy values during training. To stabilize
the optimization for νo,i, we propose to reformulate our
objective in Eq. 8 as a constrained optimization problem

argmax
Θ

∑
i

∑
o,θ,η

νo,i(log pθ(ωi|ci, o) + log pη(ci|o)

+ log pλ(o) + αo log ν̃o|i) (10)
s.t. H(νo,i) ≥ Hmin,

where we now consider a scaling αo and a minimal entropy
Hmin per component o. Choosing Hmin is easier and more
intuitive compared to choosing the entropy scaling factor α as
Hmin ensures that each component covers a certain amount of
samples, consequently preventing components from collapsing
to a single sample. A good choice is to set Hmin = log neff,
where neff is the desired number of effective samples per
component Furthermore, we are not restricted to choose one
single α for all components anymore. The Lagrangian dual
optimization yields the optimal solution for each weight

ν∗o,i ∝ (pθ(ωi|ci, o)pη(ci|o)pλ(o))
1

αo ν̃o|i,

with αo being obtained by minimizing the dual function

arg min
αo≥0

αo

(
log
∑
i

(pθ(ωi|ci, o)pη(ci|o)pλ(o))
1

αo ν̃o|i −Hmin

)
.

We optimize the convex dual using L-BFGS[25].

Demonstration Data EM Trajectories ML-Cur Trajectories

Fig. 2: Planar Robot Reacher. Trajectories in our planar
reacher toy task. The target positions are marked in purple.
Black lines represent the links of a 10DoF robotic arm with the
end-effector highlighted in red. The environment obstacles are
visualized as red boxes. The demonstrations used for training
(left) show three ways of reaching the target. We fit MoEs with
2 components with both EM (center) and ML-Cur (right). ML-
Cur avoids the mode-averaging problem that EM suffers from.

V. EXPERIMENTS

We show the advantages and strengths of our method on
three experimental settings, including real-world robots and
data. The baselines include Mixture of Expert (MoE) (Eq. 2)
trained with both Expectation Maximization (EM) [3] and
Expectation Information Maximization (EIM) [4]. While EM
suffers from outlier-sensitivity, locality-violations and mode-
averaging, EIM adresses mode-averaging yet still suffers from
locality-violations. EM and ML-Cur only have a small number
of hyper-parameters. EIM relies on an intermediate density
ratio estimation [17], making the approach inefficient and
hard to tune. We additionally compare to Mixture Density
Networks (MDN)-based approach [6], Neural Autoregressive
Flows (NFlow) [5] and K-nearest neighbor (KNN) [26].

Planar Robot Reacher. First, we consider a synthetic 2D
robotic reaching task for illustrative purposes. A 10DoF planar
robot must reach a specified target position while avoiding
three obstacles. The task is contextualized by the 2D target
position. The action space is a ten-dimensional joint angle
position vector. Using 1780 collision-free training demonstra-
tions, we fit MoE models with two components using EM and
ML-Cur. As shown in Fig. 2 EM is unable to fit the training
demonstrations as the maximum likelihood objective forces
the model to average over the middle and lower mode in the
data, which does not only prevents the robot from reaching the
targets but also makes it crash into the obstacles. ML-Cur on
the other hand simply ignores the mode with the least amount
of samples and yields a successful and safe model.

Table Tennis. Next, we consider a virtual table tennis task
modeled in MuJoCo [27]. We collect a data set using a highly
versatile reinforcement learning agent [23] and randomly split
it into 5,000 training and 500 test samples. A ball is launched
from different start positions, and after bouncing on the robot’s
table side, the robot has to return the ball to a given goal
position. The expert demonstrations entail varying movements,
such as forehand and backhand strokes.

The context is given as a 4D vector, defining the XY ball
launch position and the XY target position on the opponent’s
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Fig. 3: Table Tennis. NFlow and KNN with k = 1 and
k = 10 appear as straight lines, as these models don’t have
components. All models have been tested with 20 different
random seeds and training-test selections of the available data.
ML-Cur outperforms the baselines in both the valid strike rate
and MDE. It most closely approaches the performance of the
demonstrator, shown as a light blue dashed line.
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Fig. 4: Table Tennis. Model performance with 15 components,
for an increasing number of minimum effective samples over
ten random seeds and training-test selections. For small num-
bers of effective samples, the model specializes each compo-
nent to very few training samples. The performance suffers as
the context space is not appropriately covered. The dashed line
indicates the point where the minimum number of components
times the number of effective samples per component becomes
larger than the total sample size. Approaching this threshold
leads to the discussed degenerating behavior.

side. We evaluated two metrics, the valid strike rate, i.e.,
how often the ball is successfully returned to the other side,
and the mean distance error (MDE) to the target position for
valid strikes. Fig. 3 shows the metrics for ML-Cur, EM, EIM,
MDN, NFlow, KNN with one (1-NN) and ten (10-NN) nearest
neighbors for a varying number of model components. ML-
Cur generally outperforms EM, especially with lower numbers
of components, while EIM and MDN do not seem to be able
to solve the task as indicated by the low valid strike rate.
Nflow, 1-NN, and 10-NN have a higher valid strike rate for a
small number of components, but EM and especially ML-Cur
outperform them with more components.

Additionally, for ML-Cur, we investigate the effect of
changing the minimum number of effective samples to be
covered by each component. We fix the number of MoE
components at 15 and present the results in Fig. 4. For small
numbers of effective samples, the model is free to specialize
each component to only very few training samples. Thus,
the performance suffers as the context space is not appro-
priately covered. For a large number of effective samples the
curriculum weights become more uniform, leading to outlier-
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Fig. 5: Obstacle Avoidance. Distribution of test errors over
20 trials. MDN and NFlow can not solve the task. KNN
(k = 1) has the lowest collision rate, but the highest distance
error. ML-Cur has the lowest distance error and second lowest
collision rate, outperforming the other models.

sensitivity, locality-violations and even mode-averaging. Thus
the MoE components are unable to specialize on samples and
the overall model performance suffers.

Obstacle Avoidance. We conducted a real-world robot
experiment with a Franka Emika Panda 7DoF Manipulator.
We collect versatile human expert demonstrations using tele-
operation with a virtual twin: Moving a physical robot by hand
and mirroring its state in a MuJoCo [27]-based environment.
We place three static, cylindrical objects in the simulation
environment and move the robot end-effector around these
obstacles to the desired target position. The task is contex-
tualized by a 4D vector, describing the three obstacles and the
goal’s Y-axis position. The X-coordinate is fixed for all four
objects. We train MoE models with twelve components using
ML-Cur, EM, and EIM. As additional baselines, we include
MDN, NFlow, and KNN with one (1-NN) and ten (10-NN)
nearest neighbors. The models are trained on 228 collision-free
demonstrations and tested on 50 random test contexts using
MuJoCo. We repeated this experiment 20 times with different
random seeds and train-test selections and show the models’
error distribution on the test data in Figure 5. As metrics, we
consider the rate of generated trajectories, which collide with
at least one obstacle, and the mean distance error (MDE) of
the collision-free trajectories to the target position. MDN is
unable to generate valid trajectories, resulting in the lowest
collision rate, but the highest distance to the goal position.
KNN with k = 1 has a lower collision rate than ML-Cur,
but slightly higher distance error. ML-Cur outperforms the
remaining baselines.

Ablation Studies. We perform several ablation studies in
order to show the relative importance of the different terms
of the ML-Cur objective. To that end, we use the table tennis
task with 20 components for a quantitative analysis and the
planar reacher task for a qualitative analysis.

Data Weight Ablation. We compare ML-Cur as proposed
with a version which is optimized ignoring the data weights
νo,i as introduced in Eq. 8. Consequently, we treat every data
point as equally important.

Ignoring the data weights lead to equal updates for all
components and thus reduces the mixture of experts model



(a) ML-Cur (b) No Data Weights (c) With Locality Violation (d) Without Responsibility

Fig. 6: The planar reacher configurations at the means of the context distributions. The six Gaussian context distributions
are shown as colored uncertainty ellipses. 6a shows the result for ML-Cur. 6b demonstrates that removing the data weights
reduces ML-Cur to a single expert model, averaging over the whole context space. 6c indicates that violating locality results in
context components covering larger areas. 6d shows that removing the responsibilities from the optimization results in heavily
overlapping components, yielding less versatile solutions.

TABLE I: We ablate key aspects of our objective on the
table tennis task. As the ablation study shows all the aspects
contribute to the superior performance of ML-Cur.

Valid Strikes (↑) Distance Error (↓)

ML-Cur 0.791± 0.034 0.201± 0.007

No Data Weights 0.002± 0.001 0.62± 0.218
With Locality Violation 0.653± 0.073 0.209± 0.013
Without Responsibilities 0.667± 0.077 0.216± 0.012

to a single component. As a result, the performance degrades
drastically on all experiments as shown in Table I. In Fig. 6b
we visualize how the model behaves on the planar reaching
task. Due to the lack of the weights, it can not concentrate on
specific data points and hence can not adjust its curriculum
which lead to a poor performance.

Locality Violation Ablation. Next, we compare ML-Cur with
a version which does not make use of the Gaussian context
components pη(ci|o) during training. Without pη(ci|o) each
expert might cover an arbitrary large or disjoint regions in
the context space. After training, we fit the Gaussian context
components in order to be able to use the mixture model for
inference. As a result, mode averaging leads to performance
losses as shown in Table I and visualized in Fig. 6c.

Responsibility Ablation. Lastly, we compare ML-Cur with
a version where we do not maximize the data weight entropy
H(ν) and hence ignore the data weight responsibility ν̃o|i but
instead maximize the per component entropy H(νo). As a con-
sequence, components are not punished when covering equal
regions in the context space, leading to performance losses as
shown in Table I and visualized in Fig. 6d. Fig. 7 shows the
expansion of context components throughout training.

VI. CONCLUSION

We introduced ML-Cur, a curriculum-based approach to
versatile skill learning by imitation, using a re-parameterized
MoE over movement primitives to model contextualized and
versatile behavior. ML-Cur solves three common problems

Training Epoch 0 Training Epoch 5 Training Epoch 10

Fig. 7: The expansion of the Gaussian context distributions in
the table tennis task show the adjustment of the curriculum.

of maximum likelihood learning for MoEs: outlier-sensitivity,
locality-violation in context space and mode-averaging in
behavior space. We introduced a new objective that considers
per-component datapoint weights and context distributions
combined with an entropy bonus. The resulting objective
yields expressive yet specialized components based on in-
dividually adjusted curricula. The variational lower bound
allows for an efficient optimization while encouraging diver-
sity between the components. The resulting method, ML-Cur,
outperforms maximum likelihood approaches and even EIM
in all conducted experiments, highlighting the advantages of
our method. One of our experiments uses versatile real-world
human data, which suffers from the initially described issues.

Limitations. A limitation of our current approach is the
linearity of the experts. While using a mixture of movement
primitives still allows us to represent complex behavior it also
limits our choice of the context space. Hence, the experiments
in this paper do not consider high dimensional context, e.g.,
images or point clouds. However, for higher dimensional
contexts, the linear representation would not be sufficient, and
we would need to work with nonlinear experts.
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