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Abstract

Recent advancements in machine learning and computer

vision have been driven by benchmark datasets target-

ing specific downstream tasks. However, computer vi-

sion datasets specifically designed for robotics—focusing

on relevant scenes and prediction tasks for robot manipu-

lation—are still lacking. We introduce the Multi-Objective

Photoreal Simulation (MOPS) dataset, a novel dataset that

adresses this void by providing photorealistic simulated en-

vironments with comprehensive ground truth annotations.

MOPS uses a zero-shot asset augmentation pipeline based

on large language models to normalize and annotate 3D as-

sets on a part level. MOPS provides pixel-level segmenta-

tions for various prediction tasks critical to robotics, includ-

ing part segmentation and affordance prediction. By com-

bining these detailed annotations with photorealistic sim-

ulation, MOPS is able to generate a vast number of di-

verse indoor scenes, potentially accelerating progress in

robot perception, manipulation, and autonomous interac-

tion with real-world environments. The dataset and gener-

ation framework will be made publically available.

1. Introduction

Training and evaluating machine learning (ML) methods re-

quires data specific to a given problem setting. In the vision

domain, such tasks include pixel-wise affordance segmen-

tation [19], 3D Part Segmentation [4], Scene Graph Genera-

tion (SGG) [35] or 6D pose estimation [32]. Although some

datasets provide video sequences [2], the vast majority are

focused on static scenes without dynamic scene interaction

over time. Creating datasets and the respective annotations

annotations for all of these tasks requires human effort for

data collection and labeling. This limitation affects the scale

and annotation detail of such datasets.

Nevertheless, these and prior datasets have fueled ad-

vancements in training ML models for many computer vi-

sion tasks across various domains in recent years. The
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Figure 1. MOPS provides labled and realistic data for robot and

vision tasks alike. Leveraging Large Language Models (LLMs)

allows for zero-shot annotation of non-labeled 3D assets, as well

as zero-shot normalization. The corrected and improved 3D assets

are then used in the simulator to create new indoor scenarios and

collect new data.

robotics domain, however, is crucially underrespresented in

these datasets. While embodied agents require robust per-

ception of their environments to operate effictively and au-

tonomously, only few computer vision datasets adress the

particularities of robot manipulation. Datasets for learning

vision for robotic manipulation should ideally fulfill a sus-

pect of the following requirements:

REQ OBJ: Manipulation relevant Objects: The

datasets should contain objects relevant to robotic manipu-

lation, such as household objects commonly found in living

spaces.

REQ ANN: Manipulation relevant Annotations: Ad-
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Dataset Objects Annotations Representations Environment Interaction Robot Trajectories

Vision Datasets

CUB-200-2011 [29] P* R

CityScapes [6] S+I R

SemanticKITTI [2] S+I R+D+M

Visual Genome [14] A R+G

PSG [33] S+A R+S+G

ScanNet++ [34] ✓ S+I R+D+M ✓

HyperSim [23] ✓ S+I R+D+M ✓

RGB-D Part Aff. [19] ✓ A R+D

3D AffordanceNet [7] ✓ A M

PartNet-Mobility [31] ✓ P M

Robotics Datasets

Open-X [22] ✓ R+D ✓ ✓

DROID [11] ✓ R+D ✓ ✓

AI2-THOR [13] ✓ S+I R+D+M ✓ ✓

OmniGibson [15] ✓ S+I R+D+M ✓ ✓

RoboCasa [20] ✓ S+I R+D+M ✓ ✓ ✓

MOPS (Ours) ✓ S+I+P+A R+D+M+G ✓ ✓ (✓)

Note: S: Semantic Segmentation, I: Instance Segmentation, P: Part Segmentation, P*: Part Center Points, A: Affordance Segmentation, R: RGB, D: Depth,

M: 3D Meshes or Pointclouds, G: Scene Graphs

Table 1. Comparison of different computer vision and robotics datasets and their relevance to robot manipulation. Please note: MOPS is

compatible with demonstrations by RoboCasa, but does not provide new robot trajectories.

ditionally, datasets should include annotations relevant to

robotic manipulation, such as part information, affordance

labels or 6D poses, and ideally in high resolution (pixel-

wise).

REQ REP: Manipulation relevant Representations: In

addition to image observations, other scene representations

such as pointclouds or scene graphs are of relevance to

robotic manipulation. Such scene graphs can contain in-

formation about objects, their affordances and relations to

the robot and each other.

REQ ENV: Manipulation relevant and realistic Envi-

ronments: The obervations should be obtained from realis-

tically environments relevant to robot manipulation, such as

indoor scenes. The realism refers hereby to both the image

quality, i.e., photorealistic rendering, and real setups with

clutter and distractors, as opposed to labroratory setups.

REQ INT: Manipulation relevant Interactions: The

dataset should provide relevant agent-agent, agent-object

and object-object interactions. Hereby, an agent refers to

both a robotic agent or a human collaborator. While videos

can capture these interactions over time, ideally the robotic

agent could also directly evaluate its learned behavior, for

instance for active perception.

Our newly introduced MOPS dataset addresses all of

these requirements. In contrast exiting vision datasets full-

fill merely a subset. Human-centric video datasets [25] pro-

vide dynamic videos of human-object interaction in realis-

tic environments, but are not suitable to train a robot ma-

nipulation policy. Realistic and dynamic environments and

temporal continutity are often found in human-centric video

datasets, which are unfit for training a robot manipulation

policy. Datasets built around task relevant objects such as

affordance detection [19] or 6D pose estimation [32], are

limited in the realism of the captured environments and do

not provide any scene dynamics.

On the other hand, robot datasets [11, 22] are built

around behavior, showing dynamic and realistic scenes.

However, if any ground truth labels for the observations are

provided, their quality does not fullfill the same standards

as for vision-based datasets, requiring either manual label-

ing or sophisticated post-hoc annotation pipelines like NILS

[3].

We propose a new dataset generation framework with

pixel-level ground truth for Multi-Objective Photoreal

Simulation (MOPS). The MOPS dataset generator bridges

the gap between interactive robotics datasets for learning

behavior and high-quality pixel-level annotations from vi-

sion datasets. This makes the MOPS framework poten-
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tially interesting to both the vision and robotics community

and enables learning computer vision for robotic manipu-

lation at scale. MOPS uses assets from PartNet-Mobility

[31] and RoboCasa [20] to show scenes with articulated ob-

jects for manipulation (REQ OBJ) in photorealistically ren-

dered scenes (REQ ENV). MOPS leverages a zero-shot as-

set augmentation pipeline built on GPT-4o [21] to normal-

ize assets, and to provide manipulation relevant annotations

such as affordances (REQ ANN). Thus, MOPS can provide

pixel-level ground truth masks for relevant labels such as

class segmentations, part segmentations, instance segmen-

tations and affordance labels. MOPS can provide relevant

geometric information such as normal maps and 6D poses,

provide different sensor modalities such as RGB-D or point-

clouds and generate scene graphs with an LLM (REQ REP)

on demand. MOPS uses the Maniskill3 [26] simulator to

enable dynamic and interactive scenes, ready for evaluation

of learned robot behavior or recording demonstrations via

teleoperation (REQ INT).

2. Related Work

Vision Datasets: In order to develop and evaluate new

models for common computer vision tasks, the computer vi-

sion community has proposed several specialized datasets.

For example, CUB-200-2011 [29] is a widely used image

dataset for fine-grained image classification. The RGB im-

ages in this dataset depict 200 different bird species with

point-based annotations for body parts and attributes like

head color or wing shape. As such, it is widely used

for evaluating image classification models, including in-

terpretable approaches like prototypical part networks [5]

or concept bottleneck models [12]. For semantic seg-

mentation, several datasets have been proposed with a fo-

cus on autonomous driving, such as Cityscapes [6] or

SemanticKITTI [2]. In Scene Graph Generation (SGG)

datasets such as Visual Genome (VG) [14] are used, which

focus on the collection of many data samples, but less on

the data quality. A more clean and segmentation oriented

SGG dataset is Panoptic Scene Graphs (PSG) [33]. Al-

though these datasets are ideal to train and test novel models

specialized on the specific task, the dataset content is less

relevant to robot manipulation (REQ OBJ).

ScanNet++ [34] is a dataset of RGB-D voxels of indoor

scenes and provides ground truth semantic and instance seg-

mentation annotations. Hypersim [23] provides photoreal-

isticly rendered indoor scenes created by 3D artists, also

with semantic and instance segmentations. Such indoor en-

vironments are ideal for training household robot agents

(REQ ENV). However, they only provide class and part

segmentations and lack other interesting ground truth an-

notations such as 6D poses or affordances (REQ ANN).

The RGB-D Part Affordance dataset [19] consists of sin-

gle object RGB-D images and three cluttered scenes with

affordance annotations (REQ ANN) in front of a uniformly

blue background. This object-centric focus can be used to

train a specialized affordance detection stage after an object

detector with bounding box crops. However, it is limited

in the realism of the depicted scenes with regard to back-

ground and amount of clutter (REQ ENV). Like most pure

vision datasets, they all lack interactivity (REQ INT). Our

MOPS dataset aims to adress all these issues by providing

procedural, synthetic scenes of cluttered indoor environ-

ments with multiple, pixel-wise ground truth annotations.

This requires access to high-quality rendering assets.

3D AffordanceNet [7] is built on the 3D object mesh

dataset ShapeNet [4]. It provides nearly 23k 3D point

clouds across 23 object categories and 18 affordance la-

bels (REQ OBJ & REQ ANN). However, 3D AffordanceNet

lacks material information crucial to photorealistic render-

ing (REQ ENV). PartNet-Mobility [31] provides a subset

of ShapeNet objects with material information and mod-

eled articulation (REQ ENV), so that it could be used in a

physics simulator (REQ INT). However, PartNet-Mobility

does not provide affordances (REQ ANN). Like most 3D

asset libraries, PartNet-Mobility models are not modeled to

a common reference scale. On direct import, they appear

larger than the robotic arm (see Figure 2).

Figure 2. 3D assets such as PartNet-Mobility are often not mod-

eled to the same reference scale. MOPS normalizes all objects to

realistic size relative to the robot according to scale ranges pro-

vided by an LLM.

We propose a zero-shot augmentation pipeline based

on an LLM to provide affordance annotations for each the

used 3D assets. Additionnally, the augmentation pipeline

provides realistic scale ranges such that 1.0 simulation

units equal 1.0 meters for all objects. By using a full

physics simulator based on ManiSkill3 [26] to generate

the MOPS dataset, it offers full interactivity for evaluating

robot behavior, which is impossible on real-world RGB

images or videos.

Robotics Datasets: Datasets for robotics are typi-

cally real-world or simulated datasets. Each sample is a

pair of sensor inputs and robot movement trajectories. The

Open X-Embodiment dataset [22] is one of the largest and
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Figure 3. MOPS queries an Large Language Model (LLM) to pro-

vide a list of affordances for 3D assets on a part and object level.

For ease of visibility, we show affordance masks for the unscaled

assets.

most diverse dataset collections, consisting of more than

70 individual datasets across different labs. This, however,

leads to issues regarding consistency and data quality (REQ

ANN. The DROID dataset [11] provides a standardized

data collection platform, resulting in more consistent data.

However, increasing real-robot datasets to a scale of typical

vision/language datasets remains expensive due to the

required time in collecting robot trajectories and obtaining

ground truth annotations, even when aided by zero-shot

labeling frameworks such as NILS [3].

On the simulation side, frameworks like AI2-THOR

[13], OmniGibson [15] and RoboCasa [20] provide com-

plex room-scale scenes with photorealistic rendering capa-

bilities (REQ ENV & REQ REP). AI2-THOR offers a large

variety of procedurally generated scenes [13]. OmniGib-

son employs a high-quality physics simulation including de-

formable objects, fluids and state machines, which enables

it to simulate, for example, cooking tasks [15]. Robocasa

provides over 100k training trajectories [20] obtained via

human demonstrations and generation via MimicGen [16].

Newly proposed generative simulation frameworks such as

RoboGen [30] and Genesis [1] offer a near unlimited variety

of scenes by employing generative AI. However, they work

best for task prompts without cluttered scenes, reducing the

effectiveness of generated environments for (robotic) vision

applications (REQ ENV).

The synthetic nature of simulated datasets provide easy

access to ground truth annotations for vision tasks like depth

estimation, 6D pose estimation or instance segmentation

(REQ ANN). Additionally, they are able to easily provide

additional representations such as pointclouds (REQ REP).

Nevertheless, even object classes or categories required for

object detection, semantic segmentation or scene graph gen-

eration are often difficult to obtain. Finally, to the best of

our knowledge, no simulation framework provides pixel-

wise ground truth annotations for semantic concepts, affor-

dances, or scene graphs out of the box.

Our MOPS dataset adresses the shortcomings in envi-

ronment realism, ground truth annotations and representa-

tions by combining the high scene variety offered by Robo-

casa [20] with zero-shot augmented assets imported from

PartNet-Mobility [31]. Thus, MOPS can generate a virtu-

ally unlimited number of realistic scenes with pixel-wise

ground truth annotations, including affordances, in cluttered

environments and across represenations, including scene

graphs.

The existing simulation datasets rely on CPU based

physic simulators such as MuJoCo [27] or Unity [28]. By

implementing the MOPS dataset generation pipeline with

the ManiSkill3 simulator [26], we improve visual quality

and generation speed due to raytracing and GPU paralleliza-

tion features, similar to Isaac Lab [17]. Hence, the MOPS

dataset represents an efficient, valuable and promising as-

set for the robot learning and computer vision community.

Table 1 provides a concise overview of current computer vi-

sion and robotics datasets and their compliance with respect

to the manipulation relevant dataset requirements.

3. Zero Shot 3D Asset Augmentation

MOPS creates photorealisticly rendered scenes of indoor

environments for robot manipulation (REQ ENV) by us-

ing the ManiSkill3 [26] simulator and renderer. To popu-

late the scenes with realistic and interactive objects (REQ

OBJ) MOPS uses 3D assets provided by RoboCasas [20]

and PartNet-Mobility [31]. However, the 3D assets must

first be augmented for use in MOPS. Firstly, 3D objects are

not modeled on the same reference scale, breaking realism

(REQ OBJ & REQ ENV). Secondly, the 3D assets must be

annotated with affordance annotations in order to easily pro-

vide pixel-wise ground truth masks (REQ ANN). In order to

adress these issues, MOPS employs a zero-shot augmenta-

tion pipeline based on GPT-4o [21].

3.1. Zero-Shot Asset Normalization (REQ OBJ)

MOPS uses 3D assets of common household objects rele-

vant to robot manipulation. However, most 3D assets, in-

cluding PartNet-Mobility, are not modeled on the same ref-

erence scale. This results in unrealistic relative sizes be-

tween different assets or in relation to a simulated robot.

We propose a zero-shot asset normalizaton stage to adress

this issue.

We first verify the internal, spatial scale of the simula-

tion by comparing the Denavit-Hartenberg parameters of a

Franka Emika Panda 7-DoF arm [8] with the endeffector

coordinates in simulation. This confirms a simulation scale

of 1.0 simulation units equaling 1.0 meters.

Each asset in PartNet-Mobility is annotated with XYZ-

Bounding boxes and an object category, e.g., Remote,

Microwave, Coffemachine. Through the common-sense

knowledge embedded in recent Large Language Models

(LLMs), MOPS can obtain realistic object scales. In par-
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(a) Birdseye Camera (b) External Camera (c) Ego Camera

Figure 4. MOPS provides several camera views to cover a wide range of robot learning tasks, from mobile navigation to manipulation.

ticular, GPT-4o is queried to output standard dimensions

for each object category. MOPS queries the LLM for re-

alistic minimum and maximum Width × Height × Depth

(WHD) sizes for each object category. As the orientation

of each asset is unknown, the calculation process divides

the largest bounding box dimension with the largest WHD

dimension to obtain a realistic scaling factor. When load-

ing an asset into the simulation, a random sample from a

uniform distribution is used to scale between the minimum

and maximum realistic range to further increase the variety

in simulated objects. Figure 2 presents an example scene

before scale normalization. This approach enables easy ad-

dition of new object categories and models into the dataset,

even from other datasets.

3.2. Zero-Shot Affordance Annotation (REQ ANN)

MOPS integrates the PartNet-Mobility dataset, a collection

of articulated, part-based 3D assets. It is a subset of the Part-

Net asset dataset [18], which in turn is a subset of ShapeNet

[4]. The fully articulated PartNet-Mobility assets provide a

wide range of interactions (REQ INT), but are missing ma-

nipulation relevant annotations such as affordances (REQ

ANN).

MOPS again leverages the common-sense reasoning ca-

pabilities of LLMs to generate multi-label affordances for

each object on a part and object level. Particularly, GPT-4o

is queried to output a list of affordances for each object and

object part. For 3D assets without part annotations, e.g., the

RoboCasa assets, the zero-shot annotation stage labels the

entire object with all applicable affordances.

Finally, MOPS clusters the affordances with a sen-

tence embedding model to filter duplicates such as clos-

able and close and aligns semantic clusters like heatable

and warmup-able.

Figure 3 illustrates the multi-label part affordance masks

for a simple scene with two PartNet-Mobility assets. Future

work could extend the annotation stage to produce region-

level affordance annotations similar to the manually labeled

3D AffordanceNet[7]. Meanwhile, the already presetented

zero-shot annotation stage alleviates the human-labeling ef-

fort signficantly.

4. MOPS Dataset Generation

MOPS can generate a virtually unlimited number of simula-

tion scenes by combining 120 realistic indoor environments

from RoboCasa and its assets with 2,300 articulated ob-

jects provided by PartNet-Mobility and augmentations from

a zero-shot asset augmentation pipeline. To increase the rel-

evance for robot manipulation, MOPS provides the follow-

ing technical enhancements.

4.1. MOPS Ground Truth Masks (REQ ANN)

In order to provide a good dataset for learning computer vi-

sion tasks relevant to robot manipulation, MOPS provides

multiple scene representations. This begins with the posi-

tion of cameras. MOPS provides several camera views to

facilitate training for a range of tasks. A birdseye view can

provide ground truth for SLAM reconstruction tasks in mo-

bile manipulation. External over-the-shoulder, ego, and in-

hand cameras mimic typically used camera setups in robot

manipulation. Figure 4 presents raytraced RGB images for

a RoboCasa scene with birdseye, external and ego view for

an empty RoboCasa scene.

MOPS cameras provide commonly used image modali-

ties. The RGB renderings of the simulated scene can use

raytracing for enhanced realism, or employ rasterized ren-

dering for faster computation. The simulation provides

depth images with distance to the camera in milimeters, pro-

viding 2.5D RGB-D inputs or ground truth data for learning

depth estimation. Additionally, the underlying simulation

provides ground truth surface normal maps and part level

segmentation masks for the simulated assets.

MOPS can provide additional ground truth modalities

from the rendering, such as 6D poses for objects in the cam-

era frame, or instance and semantic segmentation masks.

These masks are generated via look-up tables MOPS pop-

ulates during scene creation and provides pixel-perfect

ground truth data.

By obtaining affordance labels from its zero-shot asset

augmentation pipeline, MOPS also provides pixel-perfect

affordance annotations for each camera.

Figure 5 presents different, visual camera modalities

from an ego camera in a sparsely populated RoboCasa
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(a) RGB (b) Depth (c) Surface Normals

(d) Part Segmentation (e) Class Segmentation (f) Multilabel Affordances

Figure 5. MOPS provides multiple, pixelwise ground truth maps in addition to RGB-D perception.

scene. The RGB modality is rendered via raytracing, re-

sulting in realistic shadows, reflections and even light trans-

mission for correctly modelled glasware assets. The depth

modality shows the distance of each pixel to the virtual cam-

era. The surface normal modality encodes the XYZ compo-

nents of each normal in the RGB values of the image. For

the part segmentation, each pixel stores the simulation inter-

nal part ID, whereas the class segmentation performs a table

lookup to retrieve the class for each part ID. Similarly, for

instance segmentation, a different lookup-table storing ob-

ject instances is used. The difference between these maps

is most notable for articulated objects, like the cabinet door

or robot arm, where each articulation link is a seperate part,

but share the same class. Finally, the affordance annotation

map returns a binary list for each pixel and affordance. It

indicates, wheter this affordance is present, as affordances

are modeled in MOPS as a multi-label annotation.

4.1.1. Extended Representations (REQ REP)

MOPS can query an LLM to generate scene graphs on de-

mand, based on the pixel-wise affordance annotations and

object class and instances.

Figure 6. Pointcloud of a RoboCasa scene with red ambient light-

ing.

The underlying ManiSkill3 simulation also supports

point cloud generation by merging the 2.5D images of all

cameras. The observations can be further customized by

changing the extrinsic and intrinsic parameters of the vir-

tual cameras or the lighting configuration. Figure 6 shows a

scene point-cloud with red ambient lighting.

The SAPIEN renderer used by ManiSkill3 provides real-

istically simulated stereo depth sensors with active IR light-

ing, including simulated sensor noise [24]. Unfortunately,

the implementation of these simulated stereo depth sensors

is not yet fully available in the in the newest release of Man-

iSkill31, and, hence can not be shown in the acmops ver-

sion presented here. However, inlcuding them once they are

available is straightforward, based on the experience with

ManiSkill2.

4.2. MOPS Realistic Environments (REQ ENV)

The goal of MOPS is to generate a vision dataset of realis-

tic environments relevant to robot manipulation. The high

visual quality of the used RoboCasa assets aids in generat-

ing realistic indoor kitchen scenes. Additionally, the high-

quality raytracing implementation used by ManiSkill3 re-

sults in photorealistic lighting and rendering.

In order to create realistically cluttered scenes with po-

tential object overlap and distractors, MOPS procedurally

places augmented PartNet-Mobility asssets in the Robo-

Casa kitchen scenes. First, MOPS obtains the location of

the kitchen countertops from the simulation. Then, it com-

putes the available space by observing the bounding box

of the collision mesh. Finally, it generates random posi-

tions within the available space and drops simulation ob-

jects. While this is a rather heuristic approach compared

1ManiSkill v3.0.0b19, retrieved 2025-03-07 from GitHub, Commit

91e1396
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to trained models such as ClutterGen [9], it can be easily

applied to novel scenes and environments outside of Robo-

Casa, without requiring any training. Figure 7 shows one

especially messy example. More scenes are presented in

the Appendix.

4.3. Interactive Simulation (REQ INT)

MOPS leverages the ManiSkill3 simulation to provide full

interactivity. Robot trajectories such as the RoboCasa

demonstrations can be rolled out to record observations in

dynamic environments.

Additionally, new demonstrations can be recorded using

an teleoperation interface. Thus, MOPS supports teaching

new robot behavior, e.g., for active perception. Figure 8

illustrates two steps in a robot trajectories recorded using

a mouse-and-keyboard teleoperation interface provided by

ManiSkill3. In this demonstration, the robot explores object

articulations in a cluttered tabletop scene by depressing the

hinged top of a stapler. The recorded robot trajectory can be

replayed to record the ground truth segmentations provided

by MOPS.

5. Affordance Analysis

The zero-shot annotation pipeline produces 24 part level an-

notations for the 23,048 3D parts of 2,346 individual objects

across 46 object categories offered by PartNet-Mobility

[31] , making MOPS the most diverse dataset for affordance

detection for both images and 3D meshes. Table 2 presents

an overview of labeled affordances and the number of la-

beled parts per affordance.

For the used RoboCasa assets, MOPS provides object-

level affordance annotations. As these assets do not provide

part informations, the affordance are applied to the entire

object, even if actions such as grasp apply to specific areas

on the object. The Zero-Shot Annotation pipeline discov-

ered 44 affordances for 1008 objects across 101 categories.

Table 3 presents the number of objects for each affordance.

Figure 7. A RoboCasa kitchen filled with PartNet-Mobility clutter.

Figure 8. MOPS uses the mouse-and-keyboard teleoparation in-

terface by ManiSkill3. The semitransparent robot arm indicates to

the user the new target position.

Robot

pickup press

Sink Spout

RemoteScissor

cut

turn on

fill

Knife

Lighter

Figure 9. Sub-graph of a possible Scene Graph (SG) generated

using the affordance information provided by MOPS.

Although 3D-AffordanceNet provides more individual

samples, MOPS provides one of the most varied affordance

learning datasets with regard to object categories, number

of affordances and sensor modalities, all embedded in real-

istic and cluttered scenes.

5.1. Scene Graph Generation

MOPS also includes Scene Graph (SG) information, which

can be used for Scene Graph Generation (SGG). Compared

to traditional SGG datasets [14], MOPS provides high qual-

ity SGs with non-redundant relation annotations. The VG

dataset includes more than 40k relation classes, resulting

in an high amount of duplicates. MOPS removes duplicate

relations by the clustering post-processing step in the zero-

shot affordance annotation stage. Furthermore, the relations

in VG are dominated by frequent occuring classes, like next

to, has or beside [35]. MOPS solves these issues through

information rich relation classes based on the detected af-

fordances. MOPS generates dual-purpose SGs through its
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Table 2. Part-Level Affordances for PartNet-Mobility dataset

Affordance Count Affordance Count Affordance Count Affordance Count Affordance Count

close 106 grasp 1897 move 1996 pull 1647 sittable 128

connect 11 insert 51 openable 2079 pushable 1638 stab 105

contain 1650 layable 1381 pourable 171 remove 51 support 1907

cut 208 lift 245 press 6658 rotate 694 turn 7

display 189 listen 2 foldable 32 wear 195

Table 3. Object Level Affordances for RoboCasa

Affordance Count Affordance Count Affordance Count Affordance Count Affordance Count

adjustable 15 contain 99 grasp 994 mixable 64 recyclable 98

breakable 68 cookable 213 hold 565 mountable 16 roastable 98

close 33 coolable 56 juicy 122 move 376 rotate 37

connect 2 cuttable 575 lift 177 openable 150 scoopable 25

consumable 110 decorative 44 lockable 4 organize 47 sealable 116

display 44 drinkable 157 mashable 61 peelable 181 shareable 73

edible 483 fillable 188 placeable 75 pointable 39 spreadable 88

press 10 pourable 252 stackable 225 store 105 squeezable 127

support 85 throwable 100 toastable 50 washable 220

affordance modeling: part-level affordances create robot-

centric SGs for manipulation tasks, while object-level affor-

dances produce vision-centric SGs for scene understanding.

Object nodes in a SG are connected if the detected af-

fordances are connected on a logical basis. For example, if

an object is cut-able and the scene includes a knife, the ob-

ject and the knife will be connected in the SG. These logical

connection can either be hand-crafted or queried through an

LLM.

An example sub-graph of a SG can be seen in Figure 9.

In contrast to the VG dataset, MOPS does not suffer from

the long-tailed distribution problem [35], because relations

and their occurence can be filtered.

6. Conclusion

We introduce MOPS, a dataset generation pipeline for

learning computer vision for robotics. MOPS provides pho-

torealistically rendered samples of common household ob-

jects relevant to robot manipulation with mulitple, pixel

level ground truth annotations. Hereby, the ground truth

annotations focus on tasks relevant to computer vision and

robotics, such as class, part and instance segmentation,

affordance labels and 6D poses. By using assets from

PartNet-Mobility and RoboCasa, MOPS generates cluttered

object ensembles and realistic indoor kitchen scenes. The

employed ManiSkill3 simulator provides full interactivity

for recording, learning and evaluating robot behavior.

MOPS uses a zero-shot asset augmentation pipeline by

leveraging GPT-4o to generate one of the most diverse affor-

dance learning datasets with over 40 labels across 100+ ob-

ject categories. This augmentation pipeline can be quickly

applied to new asset libraries or novel semantic labels for

even more variety.

Limitations. Although MOPS leverages many advan-

tages provided by the underlying ManiSkill3 simulator,

MOPS is also limited by the simulators functionality. For

example, the raytraced rendering is not usable in conjunc-

tion with GPU parallelizaton, limiting the maximum perfor-

mance. Future work could adapt MOPS to other simulators

such as Isaac Lab [17] or Genesis [1] for enhanced render-

ing and parallelization capabilities.

Future Work. MOPS relies on 3D assets with realistic

material information and textures. Future work could ex-

plore extending the presented zero-shot asset augmentation

pipeline to also generate materials and textures via GenAI.

This would enable MOPS to import the entire PartNet [18]

and ShapeNet [4] datasets.

Lastly, MOPS is fully compatible to robot demonstra-
tions provided by RoboCasa. However, MOPS currently
does not provide new demonstrations showing robot-object
interactons. A future version will explore teleoperation in-
terfaces such as IRIS [10] for recording new robot trajecto-
ries in AR/VR.
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Multi-Objective Photoreal Simulation (MOPS) Dataset for Computer Vision in

Robotic Manipulation

Supplementary Material

7. Example Single Object Images

Figure 10 shows example observations from the single ob-

ject configuration, which mimics single object datasets with

uniform backgrounds like RGB-D Part Affordance [19].

8. Tabletop Clutter Images

Figure 11 shows example observations from randomly gen-

erated, cluttered tabletop scenes. These images show inter-

active scenes including the robot base, ready for learning

robot behavior. For a purely vision-based dataset, the envi-

ronment geometry with table, floor, robot and background

could be easily disabled.

9. Example Cluttered Kitchen Images

Figure 12 shows example observations from the cluttered

RoboCasa kitchen configuration.
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Figure 10. Single Object images. From Left to Right: RGB Image, Normal Map, Depth Image, Part Segmentation, Affordance Segmenta-

tion. Please note that the colors for Affordance Segmentation visualizaton only provide contrast and do not share meaning across images.
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Figure 11. Cluttered Tabletop. From Left to Right: RGB Image, Normal Map, Depth Image, Part Segmentation, Class Segmentation,

Affordance Segmentation. Please note that the colors for segmentation visualizations only provide contrast and do not share meaning

across images. The depth images lack visual detail in this illustration, due to the floor in the background going towards infinity.
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Figure 12. RoboCasa Kitchens with clutter. From Left to Right: RGB Image, Normal Map, Depth Image, Class Segmentation, Affordance

Segmentation. Please note that the colors for Affordance Segmentation visualizaton only provide contrast and do not share meaning across

images.
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